搜索
写经验 领红包
 > 娱乐

光栅传感器的结构及工作原理(光栅传感器的结构及工作原理图)

导语:光栅传感器的结构及工作原理

一般常用的光栅是在玻璃上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于 一狭缝。精制的光栅,在1CM宽度内刻有几千条乃至上万条刻痕。

这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光的光栅,如在镀有金属的表面上刻出许多平行刻痕,两刻痕的光滑金属面可以反射光,这种光栅成为反射光栅。由光栅形成的叠栅条纹具有光学放大作用和误差平均效应,因而能提高测量精度。

光栅传感器由标尺光栅、指示光栅、光路系统和测量系统四部分组成系统。标尺光栅相对于指示光栅移动时,便 形成大致按正弦规律分布的明暗相间的叠栅条纹。

这些条纹以光栅的相对运动速度移动,并直接照射到光电元件上,在它们的输出端得到一串电脉冲,通过放大、整形、辨向和计数系统产生数字信号输出,直接显示被测的位移量。

光栅传感器的结构及原理

光栅传感器的结构均由光源、主光栅、指示光栅、通光孔、光电元件这几个主要部分构成。

1、光源:钨丝灯泡,它有较小的功率,与光电元件组合使用时,转换效率低,使用寿命短。半导体发光器件,如砷化镓发光二级管,可以在范围内工作,所发光的峰值波长为,与硅光敏三极管的峰值波长接近,因此,有很高的转换效率,也有较快的响应的速度。

2、光栅付:由栅距相等的主光栅和指示光栅组成。主光栅和指示光栅相互重叠,但又不完全重合。两者栅线间会错开一个很小的狭角,以便于得到莫尔条纹。一般主光栅是活动的,它可以单独地移动,也可以随被测物体而移动,其长度取决于测量光围。指示光栅相对于光电器件而固定。

3、通光孔:通光孔是发光体与受光体的通路,一般为条形状,其长度由受光体的排列长度决定,宽度由受光体的大小决定。它是帖在指示光栅上的。

4、受光元件:受光元件是用来感知主光栅在移动时产生的莫尔条纹的移动,从而测量位移动。在选择光敏元件时,要考虑灵敏度、响应时间、光谱特性、稳定性、体积等因素。

将主光栅与标尺光栅重叠放置,两者之间保持很小 的间隙,并使两块光栅的刻线之间一个微小的夹角θ,如图所示。

当有光源照射时,由于挡光效应(对刻线密度 ≤50条/mm的光栅)或光的衍射作用(对刻线密度 ≤100条/mm的光栅),与光栅刻线大致垂直的方向上形成明暗相间的条纹。

在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开的地方,形成暗带;这些明暗相间的条纹称为莫尔条纹。

莫尔条纹的间距与栅距W和两光栅线的夹角θ(单位为rad)之间的关系为

(K称为放大倍数)。

当指示光栅不动,主光栅的刻线与指示光栅刻线之间始终保持夹角θ,而使主光栅的沿刻线的垂直方向任相对移动时,莫尔条纹将沿光栅刻线方向移动;光栅反向移动,莫尔条纹也反向的移动。

主光栅每移动一个栅距W,莫尔条纹也相应移动一个间距S。因此通过测量莫尔条纹的移动,就能测量光栅移动的大小和方向,这要比直接对光栅进行测量容易得多。

当主光栅沿与刻线垂直方向移动一个栅距W时,莫尔条纹移动一个条纹间距。当两个光栅刻线夹角θ较小时,由上述公式可知,W一定时,θ愈小。则B愈大,相当于把栅距W放大了1/θ倍。因此,莫尔条纹的放大倍数相当大,可以实现高灵敏度的位移测量。

莫尔条纹是由光栅的许多刻线共同形成的,对刻线误差具有平均效应,能在很大程度上削除由于刻线误差所引起的局部和短周期误差影响,可以达到比光栅本身刻线精度更高的测量精度。因此,计量光栅特别适合于小位移、高精度位移测量。

免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请反馈,一经查实立刻删除内容。本文内容由快快网络小涵创作整理编辑!