搜索
写经验 领红包
 > 社会

四维空间和三维空间的区别在哪里(什么是四维空间)

在生活中,很多人可能想了解和弄清楚四维空间和三维空间的区别的相关问题?那么关于四维空间和三维空间的区别在哪里的答案我来给大家详细解答下。

四维空间和三维空间的区别在哪里(什么是四维空间)

一、什么是四维空间

超过三维的空间,即高维空间,作为几何对象是很难理解的,作为代数对象却很容易理解。

根据我们日常对一维(线)、二维(面)、三维(体)空间的印象,一个空间有几维,就是在这个空间中能够做几条互相垂直的直线,或者说有几个互相垂直的方向。你面前一条左右伸展的直线上,只有左右方向。你面前一张铺开的白纸上,有左右方向加上下方向。你面前的整个空间中,有左右方向、上下方向和前后方向。

以此类推,四维空间就是在左右、上下和前后之外,还有一个与它们垂直的方向的空间。这个定义一目了然,人脑却难以想象出来(不排除有些数学家经过特殊训练有可能想象出来),因为我们日常见到的空间是三维空间,不存在这第四个方向。四维都想象不出来,更高维度就更不用说了。所以说,高维空间作为几何对象是很难理解的。

从代数的观点看,n维的空间就是所有的满足以下性质的矢量的集合:(1)有n个互相垂直的基础矢量属于此集合,垂直的定义是纯粹代数的,即两个矢量的“内积”等于0;(2)此集合中任何一个矢量都等于这n个基础矢量乘以某些常数后相加(即这些基础矢量的线性叠加),例如2乘以第一个基础矢量,加上3乘以第二个基础矢量,加上0.5乘以第三个基础矢量,加上0乘以后面的基础矢量。你如果能看懂,太好了。如果看不懂,没办法,只能说这是大学里线性代数的内容,等你学到线性代数就明白了。这个定义的妙处是完全不需要空间想象,无论多少维在数学表述上都是一样的。所以说,高维空间作为代数对象很容易理解。

二、四维空间就是无数个三维空间

我先从0维空间说起,大家一起来想像一下(人的大脑是可以超维度的,所以可以想像出高维空间)

0维—— 一个点,没有上、没有下、没有左、没有右也没有前也没有后,就是一个点。 1维—— 无数个点(0维空间)组成的一条线,有了前和后的概念;但是,任然没有左右和上下。

2维—— 无数条相同的线(1维空间)组成的一个面;有前后也有左右的概念,但是,上和下任然不存在。

3维—— 我们生存的空间;由无数个面(2维空间)一层一层的叠起来组成的“立方体”空间,有上下、有前后也有左右的概念。

4维—— 超越我们生存的空间;由无数个立方体(3维空间)组成的“超立方”空间。在这个空间里,上下、左右、前后是无限的。

温馨提示:通过以上关于四维空间和三维空间的区别内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。