多模光纤与单模光纤分类及使用方法(多模光纤与单模光纤分类及使用方法区别)
在生活中,很多人可能想了解和弄清楚多模光纤与单模光纤分类及使用的相关问题?那么关于多模光纤与单模光纤分类及使用方法的答案我来给大家详细解答下。
光纤分类: 按光在光纤中的传输模式分:
多模光纤
多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。
多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤
单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在1.31μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
单模光纤中,模内色散是比特率的主要制约因素。由于其比较稳定,如果需要的话,可以通过增加一段一定长度的“色散补偿单模光纤”来补偿色散。零色散补偿光纤就是使用一段有很大负色散系数的光纤,来补偿在1550nm处具有较高色散的光纤 。使得光纤在1550nm附近的色散很小或为零,从而可以实现光纤在1550nm处具有更高的传输速率。
在单模光纤中,另一种色散现象是偏振模色散(PMD),由于PMD是不稳定的,因而不能进行补偿。
多模光纤
多模光纤中,模式色散与模内色散是影响带宽的主要因素。PCVD工艺能够很好地控制折射率分布曲线,给出优秀的折射率分布曲线,对渐变型多模光纤(GIMM),可限制模式色散而得到高的模式带宽。
全系统带宽达到一定程度时,同样也受到模内色散的制约,尤其在850nm处,多模光纤的模内色散非常大。一些国际标准给出的多模光纤在850nm处的色散系数为-120ps/(nm·km),而PCVD多模光纤的色散值介于-95~-110 ps/(nm·km)。
在使用中最主要的区别:
多模光纤多用于传输速率相对较低,传输距离相对较短的网络中,如局域网等,这类网络中通常具有节点多,接头多,弯路多,而且连接器、耦合器的用量大,单位光纤长度使用光源个数多等特点,使用多模光纤可以有效的降低网络成本。单模光纤多用于传输距离长,传输速率相对较高的线路中,如长途干线传输,城域网建设等。
光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用来选择光缆的外护套。在选用时应该注意以下几点:
1.户外用光缆直埋时,宜选用凯状光缆。架空时,可选用带两根和多根加强筋的黑色塑料外护套的光缆。
2.建筑物内用的光缆在选用时应该注意其阻燃、毒和烟的特性。一般在管道中和强制通风处可选用阻燃但有烟的类型,暴露的环境中应选用阻燃、无烟和无毒的类型。
3.楼内垂直布线时,可选用层绞式光缆(Distribution Cables);水平布线式,可选用可分支光缆(Breakout Cables)。
4.传输距离在2Km以内的,可选用多模光线,超过2Km可用中继或选用单模光缆。实际中,在3KM以内用多模,如果是3-20km距离就用单模,如果是20km以上就需要中继了!
以上是抛开光缆本身价格及质量因素,单从应用方面考虑应该注意的几个问题。实施时还需灵活掌握。其实,布线环境复杂多样,各种问题都可能随时出现,这就需要我们在规划和施工时严格按照布线标准实施,遇到问题灵活分析。
温馨提示:通过以上关于多模光纤与单模光纤分类及使用内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。