搜索
写经验 领红包

什么是冒泡排序(什么是冒泡排序选择排序快速排序)

在生活中,很多人可能想了解和弄清楚「算法」什么是冒泡排序的相关问题?那么关于什么是冒泡排序?的答案我来给大家详细解答下。

什么是冒泡排序?(什么是冒泡排序,选择排序,快速排序)

点击上方"java全栈技术"关注,每天学习一个java知识点

————— 当天上午 —————

什么是冒泡排序?

冒泡排序的英文Bubble Sort,是一种最基础的交换排序。

大家一定都喝过汽水,汽水中常常有许多小小的气泡,哗啦哗啦飘到上面来。这是因为组成小气泡的二氧化碳比水要轻,所以小气泡可以一点一点向上浮动。

而我们的冒泡排序之所以叫做冒泡排序,正是因为这种排序算法的每一个元素都可以像小气泡一样,根据自身大小,一点一点向着数组的一侧移动。

具体如何来移动呢?让我们来看一个栗子:

有8个数组成一个无序数列:5,8,6,3,9,2,1,7,希望从小到大排序。

按照冒泡排序的思想,我们要把相邻的元素两两比较,根据大小来交换元素的位置,过程如下:

首先让5和8比较,发现5比8要小,因此元素位置不变。

接下来让8和6比较,发现8比6要大,所以8和6交换位置。

继续让8和3比较,发现8比3要大,所以8和3交换位置。

继续让8和9比较,发现8比9要小,所以元素位置不变。

接下来让9和2比较,发现9比2要大,所以9和2交换位置。

接下来让9和1比较,发现9比1要大,所以9和1交换位置。

最后让9和7比较,发现9比7要大,所以9和7交换位置。

这样一来,元素9作为数列的最大元素,就像是汽水里的小气泡一样漂啊漂,漂到了最右侧。

这时候,我们的冒泡排序的第一轮结束了。数列最右侧的元素9可以认为是一个有序区域,有序区域目前只有一个元素。

下面,让我们来进行第二轮排序:

首先让5和6比较,发现5比6要小,因此元素位置不变。

接下来让6和3比较,发现6比3要大,所以6和3交换位置。

继续让6和8比较,发现6比8要小,因此元素位置不变。

接下来让8和2比较,发现8比2要大,所以8和2交换位置。

接下来让8和1比较,发现8比1要大,所以8和1交换位置。

继续让8和7比较,发现8比7要大,所以8和7交换位置。

第二轮排序结束后,我们数列右侧的有序区有了两个元素,顺序如下:

至于后续的交换细节,我们这里就不详细描述了,第三轮过后的状态如下:

第四轮过后状态如下:

第五轮过后状态如下:

第六轮过后状态如下:

第七轮过后状态如下(已经是有序了,所以没有改变):

第八轮过后状态如下(同样没有改变):

到此为止,所有元素都是有序的了,这就是冒泡排序的整体思路。

原始的冒泡排序是稳定排序。由于该排序算法的每一轮要遍历所有元素,轮转的次数和元素数量相当,所以时间复杂度是O(N^2) 。

冒泡排序第一版:

代码非常简单,使用双循环来进行排序。外部循环控制所有的回合,内部循环代表每一轮的冒泡处理,先进行元素比较,再进行元素交换。

————————————

原始的冒泡排序有哪些优化点呢?

让我们回顾一下刚才描述的排序细节,仍然以5,8,6,3,9,2,1,7这个数列为例,当排序算法分别执行到第六、第七、第八轮的时候,数列状态如下:

很明显可以看出,自从经过第六轮排序,整个数列已然是有序的了。可是我们的排序算法仍然“兢兢业业”地继续执行第七轮、第八轮。

这种情况下,如果我们能判断出数列已经有序,并且做出标记,剩下的几轮排序就可以不必执行,提早结束工作。

冒泡排序第二版

这一版代码做了小小的改动,利用布尔变量isSorted作为标记。如果在本轮排序中,元素有交换,则说明数列无序;如果没有元素交换,说明数列已然有序,直接跳出大循环。

为了说明问题,咱们这次找一个新的数列:

这个数列的特点是前半部分(3,4,2,1)无序,后半部分(5,6,7,8)升序,并且后半部分的元素已经是数列最大值。

让我们按照冒泡排序的思路来进行排序,看一看具体效果:

第一轮

元素3和4比较,发现3小于4,所以位置不变。

元素4和2比较,发现4大于2,所以4和2交换。

元素4和1比较,发现4大于1,所以4和1交换。

元素4和5比较,发现4小于5,所以位置不变。

元素5和6比较,发现5小于6,所以位置不变。

元素6和7比较,发现6小于7,所以位置不变。

元素7和8比较,发现7小于8,所以位置不变。

第一轮结束,数列有序区包含一个元素:

第二轮

元素3和2比较,发现3大于2,所以3和2交换。

元素3和1比较,发现3大于1,所以3和1交换。

元素3和4比较,发现3小于4,所以位置不变。

元素4和5比较,发现4小于5,所以位置不变。

元素5和6比较,发现5小于6,所以位置不变。

元素6和7比较,发现6小于7,所以位置不变。

元素7和8比较,发现7小于8,所以位置不变。

第二轮结束,数列有序区包含一个元素:

这个问题的关键点在哪里呢?关键在于对数列有序区的界定。

按照现有的逻辑,有序区的长度和排序的轮数是相等的。比如第一轮排序过后的有序区长度是1,第二轮排序过后的有序区长度是2 ......

实际上,数列真正的有序区可能会大于这个长度,比如例子中仅仅第二轮,后面5个元素实际都已经属于有序区。因此后面的许多次元素比较是没有意义的。

如何避免这种情况呢?我们可以在每一轮排序的最后,记录下最后一次元素交换的位置,那个位置也就是无序数列的边界,再往后就是有序区了。

冒泡排序第三版

这一版代码中,sortBorder就是无序数列的边界。每一轮排序过程中,sortBorder之后的元素就完全不需要比较了,肯定是有序的。

温馨提示:通过以上关于「算法」什么是冒泡排序内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。