曲线与方程之间的纠缠关系(曲线与方程之间的纠缠是什么)
导语:曲线与方程之间的纠缠
考纲原文
了解方程的曲线与曲线的方程的对应关系.
知识点详解
一、曲线与方程的概念
一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.
二、坐标法(直接法)求曲线方程的步骤
求曲线的方程,一般有下面几个步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件p的点M的集合P={M|p(M)} ;
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0 为最简形式;
(5)说明以化简后的方程的解为坐标的点都在曲线上.
一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x,y的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程.
三、两曲线的交点
(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.
(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.
考向分析
考向一 考查曲线与方程的概念
判断曲线与方程的关系时,把握两个对应关系:
(1)曲线上的每个点都符合某种条件;
(2)每个符合条件的点都在这条曲线上.若要判断点是否在方程表示的曲线上,只需检验点的坐标是否满足方程.
考向二 直接法求轨迹方程
直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.
考向三 定义法求轨迹方程
求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.理解解析几何中有关曲线的定义是解题的关键.
利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制.
考向四 相关点法求轨迹方程
考向五 参数法求轨迹方程
考向六 圆锥曲线中的对称问题
圆锥曲线上两点关于直线对称的问题是高考命题的一个热点问题,该问题集垂直、中点弦、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程、函数、不等式、点差法等重要数学知识和思想方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,但难度适中,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能.圆锥曲线上两点关于直线对称的问题主要有联立方程和点差法两种解法.
免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请反馈,一经查实立刻删除内容。本文内容由快快网络小奈创作整理编辑!