搜索
写经验 领红包
 > 情感

如何理解实数的连续性和间断性(如何理解实数的连续性原理)

在生活中,很多人可能想了解和弄清楚如何理解实数的连续性的相关问题?那么关于如何理解实数的连续性和间断性的答案我来给大家详细解答下。

如何理解实数的连续性和间断性(如何理解实数的连续性原理)

很多人都知道:在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数,我们说实数和数轴上的点一一对应。

什么叫一一对应?一条数轴上有无数个点,可以说是“密密麻麻”的,实数有无数个,数都数不清楚。有理数和无理数构成实数,在直线上取定一个原点,一个单位长和一个方向,直线就成了数轴。因此,数轴上的每个点代表一个实数,每个实数都可以用数轴上的一个点表示。实数可以连续变化,就是说点可以在数轴上连续地运动。

如整数由小到大的变化是跳跃式的,从整数1到整数2,中间没有任何整数;但有理数从1变到2,它们之间是密密麻麻的,跨过了许多分数,看上去找不到一段“空白”,中间似乎没有跳跃。事实上有理数从l变到2并非连续地变化,因为中间跨过了许多无理数,如2的算术平方根。

因此,有理数之间的“空白部分”加上无理数构成实数,实数就可以连续变化。这种连续性可以说变量x从1变到2,意味着x要取遍1到2之间的一切实数。

我们设想用一把剪刀剪断数轴,把数轴剪成两段,那么剪刀一定会剪在某个点上,即剪中了某一个实数。如果剪刀只是剪在一个隙缝上,意味着实数就不是连续的。

这时候有读者会产生疑问,如果没有隙缝,那么应该剪在哪里呢?如果剪在某一个点上,那么这个点在哪半截数轴上呢?我们假设是从数轴点A处被剪断的,那么这个点不在左半截上,就在右半截上。因为点不可分割,同时不会消失,所以不会两边都有,也不会两边都没有。因此,不管把数轴从什么地方分成两半截,总有半截是带端点的,而另外半截没有端点。从这个假想中我们可以领会到数轴、实数的连续性。

如果把全体负有理数放在一起组成甲集合,所有正有理数组成乙集合,则甲集合无最大数,乙集也无最小数。若从甲乙两个集合之间剪一刀,就剪在缝里了。然而在实数系中,这个缝就是用无理数填补起来。

这样把有理数分成甲、乙两部分,使乙中每个数比甲中每个数大,这种分法叫做有理数的一个戴德金分割,简称分割。有理数的每个分割确定一个实数。有缝隙的分割确定一个无理数,没有缝隙的分割确定一个有理数。这样建立实数系的方法是德国数学家戴德金(J.W.R. Dedekind,1831~1916)提出来的。

我们把全体实数分成甲、乙两个非空集合,如果甲集合里任一个数a比乙集合里的任一个数b都小,或者甲集合里有最大数,或者乙集里有最小数,两种情况必居其一,有且只有一种,这就叫做实数的连续性。

温馨提示:通过以上关于如何理解实数的连续性内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。