搜索
写经验 领红包
 > 教育

流固耦合计算方法(流固耦合理论基础)

在生活中,很多人可能想了解和弄清楚流固耦合求解的核心问题—动网格的相关问题?那么关于流固耦合计算方法的答案我来给大家详细解答下。

流固耦合计算方法(流固耦合理论基础)

流固耦合问题的研究历史可追溯到19世纪初,人们对于流固耦合现象的早期认识源于机翼及叶片的气动弹性问题。气动弹性是研究气动力对固体的作用以及固体对流场的反作用的一门科学,核心内容就是气流激振问题。弹性体的叶片在气动力作用下形成气弹耦合的振动,当叶片在振动位移过程中,从气流中吸收的能量大于阻尼功时,振动加剧,颤振发作,也就是通常所说的失速颤振。叶片颤振涉及气动力特性和叶片固体动力特性,叶片颤振的发生与其工作状态有关。失速颤振发生时,大幅的剧烈振动会使叶片在短时间内裂断,后果极为严重。此外,流固耦合问题还在很多工程技术领域得到了研究,例如涡轮机械设计、海岸海洋工程、高层建筑工程、流体管路输送以及人体动脉流动等‘”,而这些工程领域的共同特点就是流体载荷对弹性结构的影响十分重要。

流固耦合问题可由其耦合方程定义,这组方程的定义域同时有流体域与固体域。而未知变量含有描述流体现象的变量和含有描述固体现象的变量,一般而言具有以下两点特征:1)流体域与固体域均不可单独地求解2)无法显式地削去描述流体运动的独立变量及描述固体现象的独立变量从总体上来看,流固耦合问题按其耦合机理可分为两大类:第一类问题的特征是耦合作用仅仅发生在两相交界面上,在方程上的耦合是由两相耦合面上的平衡及协调来引入的如气动弹性、水动弹性等。第二类问题的特征是两域部分或全部重叠在一起,难以明显地分开,使描述物理现象的方程,特别是本构方程需要针对具体的物理现象来建立,其耦合效应通过描述问题的微分方程来体现。实际上流固耦合问题是场(流场与固体变形场)间的相互作用:场间不相互重叠与渗透其耦合作用通过界面力(包括多相流的相间作用力等...)起作用,若场间相互重叠与渗透其耦合作用通过建立不同与单相介质的本构方程等微分方程来实现。

流固耦合求解时有三种方式:1.两场交叉迭代。2.直接全部同时求解。3.有限元求解。流固耦合的数值计算问题,早期是从航空领域的气动弹性问题开始的,这也就是通过界面耦合的情况,只要满足耦合界面力平衡,界面相容就可以。气动弹性开始主要是考虑机翼的颤振边界问题,计算采用简化的气动方程和结构动力学方程,从理论推导入手,建立耦合方程,这种方法求解相对容易,适应性也较窄。现在由于数值计算方法,计算机技术的发展,整个的求解趋向于NS方程(纳维-斯托克斯方程Navier-Stokes equations)与非线性结构动力学。一般使用迭代求解,也就是在流场,结构上分别求解,在各个时间步之间耦合迭代,收敛后再向前推进。好处就是各自领域内成熟的代码稍作修改就可以应用。其中必然要涉及一个动网格的问题,由于结构的变形,使得流场的计算域发生变化,要考虑流场网格随时间变形以适应耦合界面的变形。不过现在国外比较时髦的好像都在做系统性的设计问题,数值计算一般已经可以满足需要。在数值计算的初步估计基础上,通过降维模型(reduced order model) 可以很快的得到初步设计方案,再通过详细的数值计算来验证。流固耦合做得比较好的软件GDS Studio、COMSOL和ADINA。

耦合求解过程的核心是计算带有移动边界和移动网格的非定常流动问题,这是因为流动域的大小和形状随着结构的移动或变形在不断变化着。同时,正由于耦合系统中混合了线性和非线性问题,存在了对称和非对称矩阵,包括了显性和隐性的耦合机理,并且出现了物理不稳定条件,使得耦合问题求解十分困难。根据不同的耦合边界处理方法,流固耦合求解方法主要分为两类:浸入边界法(Immersed Boundary Method)和动边界法(Moving Boundary Method)。浸入边界法最初由Peskin和McQueen在1972年提出,并用于模拟人类心脏中的血液流动。它的基本思想是将复杂结构的边界模化成Navier-Stokes动量方程中的一种体力,并使用简单的笛卡儿网格有效地避开贴体网格生成的困难,提高了计算效率。经过40多年的不断发展和改进,浸入边界法已成功应用于生物流体问题、流固耦合问题、物体绕流问题以及多相流问题等。

动边界法是工程技术研究领域使用最广泛的流固耦合求解方法。为了能够表征边界的移动,通常使用流体方程的任意拉格朗日—欧拉(Arbitrary Lagrangian-Eulerian,简称ALE)形式。该形式的方程可以直接处理移动的边界和耦合面(包括自由表面),但需要确立一个连续的计算网格移动方式。动边界法的流固耦合计算主要关注两个方面的问题,即耦合系统方程的时间积分算法和流固耦合面的处理方法。耦合系统的时间积分算法根据物理问题的相对时间尺度分为显式算法(Explicit Coupling)和隐式算法(Implicit Coupling);耦合面的处理主要是流体和固体子域间的信息传递,需要考虑3个问题:①流体网格与固体网格间的载荷传递;②流体网格与固体网格间的几何变形传递;③不同时间步长上解的同步问题。因此,根据以上耦合问题的物理特性,有两种求解策略:直接耦合求解(Monolithic/Direct Method)和迭代耦合求解(Partitioned/Iteration/Staggered Method)。

温馨提示:通过以上关于流固耦合求解的核心问题—动网格内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。