> 自媒体
小资金投资介绍(小资金投资可信吗)
导语:专为小资金投资者设计的交易策略及Python实现
专为小资金推荐的交易策略,并附Python代码,分别定义为函数,可以根据需要调用:
1.均值回归交易
均值回归交易基于价格最终会恢复到历史平均水平的想法。该策略涉及识别当前超买或超卖的资产,然后在相反方向建立头寸,预期回归均值。
import numpy as npimport pandas as pdfrom scipy.stats import zscoredef mean_reversion_strategy(prices, lookback=20, z_score_threshold=2): rolling_mean = prices.rolling(window=lookback).mean() z_scores = zscore(prices - rolling_mean) buy_signals = z_scores <= -z_score_threshold sell_signals = z_scores >= z_score_threshold return buy_signals, sell_signals
2. 动量交易
动量交易涉及买入表现优于大盘的资产和卖出表现不佳的资产,基于价格趋势将持续的假设。
def momentum_strategy(prices, lookback=12, holding_period=1): returns = prices.pct_change() momentum = returns.rolling(window=lookback).mean() ranking = momentum.rank(axis=1, ascending=False) buy_signals = (ranking <= holding_period) sell_signals = (ranking > holding_period) return buy_signals, sell_signals
3. 配对交易
配对交易是一种市场中性策略,涉及识别两种历史上相关的资产,然后在它们的价格关系出现分歧时,在一种资产中持有多头头寸,在另一种资产中持有空头头寸。
def pairs_trading_strategy(prices, asset1, asset2, lookback=20, z_score_threshold=2): spread = prices[asset1] - prices[asset2] rolling_mean = spread.rolling(window=lookback).mean() rolling_std = spread.rolling(window=lookback).std() z_scores = (spread - rolling_mean) / rolling_std buy_signals = z_scores <= -z_score_threshold sell_signals = z_scores >= z_score_threshold return buy_signals, sell_signals
4.突破交易
突破交易涉及识别资产突破整合模式并进入新趋势的价格水平。一旦出现突破,交易者就会在突破的方向建仓,预计趋势会延续。
def breakout_strategy(prices, lookback=20): rolling_high = prices.rolling(window=lookback).max() rolling_low = prices.rolling(window=lookback).min() buy_signals = (prices > rolling_high.shift(1)) sell_signals = (prices < rolling_low.shift(1)) return buy_signals, sell_signals
这些交易策略在实际交易实施之前应进行回测评估。
本文内容由快快网络小馨整理编辑!