> 汽车交通
如何画oc曲线(oc曲线画法)
导语:机器学习面试:手画ROC曲线
1、前言:
ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到)。
2、ROC曲线定义:
ROC(Receiver Operating Characteristic)曲线,又称接受者操作特征曲线。该曲线最早应用于雷达信号检测领域,用于区分信号与噪声。后来人们将其用于评价模型的预测能力,ROC曲线是基于混淆矩阵得出的。
ROC曲线中的主要两个指标就是真正率和假正率,上面也解释了这么选择的好处所在。其中横坐标为假正率(FPR),纵坐标为真正率(TPR),下面就是一个标准的ROC曲线图。
3、为什么要使用ROC曲线:
1)对类别不平衡不敏感
2) 适用于评估分类器的整体性能
3) 不会随着样本中的正负样本比例变化而产生明显变化
4、面试现场如何手画ROC曲线:
例子:请根据下表数据画出ROC曲线
步骤一:按照预测概率值降序排列;
步骤二:阈值选择:选取预测概率某一值为阈值,大于或等于阈值的样本预测为1,其他预测为0,并计算其真正率(tpr)和假正率(fpr),由此可以得到ROC曲线上的一个点。
步骤三:重复步骤二10次,得到10个点,连接并可得到ROC曲线。
本文内容由小美整理编辑!