阿氏圆值模型(阿氏圆值问题公式)
导语:最短路径之阿氏圆(PA+k·PB型)问题探究
知识精讲
在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A、B,若平面内有一动点P满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1,P点的轨迹又会是什么呢?两千多年前的阿波罗尼斯在其著作《平面轨迹》一书中,便已经回答了这个问题。接下来,让我们站在巨人的肩膀上,一起探究PA:PB=k(k≠1)时P点的轨迹。
对于平面内的定点A、B,若在平面内有一动点P且P满足PA:PB=k(k≠1),则动点P的轨迹就是一个圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”,如图所示:
几何“PA + k·PB”型的最值问题.
如图2所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?如图3所示,在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小(如图 4 所示).
专题导例
1.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值 .
方法点睛
“阿氏圆”解题一般步骤:
(1)连接动点 P 至圆心 O(将系数不为 1 的线段的两个端点分别与圆心相连接),即连接 OP,OB;
(2)计算出所连接的这两条线段 OP,OB 的长度;
(3)计算这两条线段长度的比 =K ;
(4)在 OB 上取点 C,使得= ,即:半径的平方 = 原有的线段 × 构造线段;
(5)连接AC与圆O的交点即为点 P.
要点:如图5,构造△PAB△CAP,得到=AB·AC,
即:半径的平方=原有线段 × 构造线段
口诀:路径成最短,折线变直线
典例精讲
类型一:圆中的阿氏圆问题
例1如图,已知AC=6,BC=8,AB=10,⊙C的半径为4,点D是⊙C上的动点,连接AD,连接AD、BD,则AD+BD的最小值为______ .
方法一:阿氏圆模型
对比一下这个题目的条件,P点轨迹是圆,A是定点,我们需要找出另一个定点M使得PM:PA=1:2,这就是把“阿氏圆”的条件与结论互换了一下;
而且这种问题里,给定的圆的位置、定点A的位置、线段的比例等,往往都是搭配好的!
P点轨迹圆的圆心C点和A点在直线AC上,故所求M点在AC边上,考虑到PM:PA=1:2,不妨让P点与D点重合,此时DM=DA=1,即可确定M点位置.
如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.
方法二:构造相似三角形
注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=PA.
问题转化为PM+PB最小值,直接连BM即可.
【问题剖析】
(1)这里为什么是PA?
答:因为圆C半径为2,CA=4,比值是1:2,所以构造的是PA,也只能构造PA.
(2)如果问题设计为PA+kPB最小值,k应为多少?
答:根据圆C半径与CB之比为2:3,k应为.
类型二:与抛物线有关的阿氏圆问题
例2.如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC,OA,AB,已知OA=OB=2,∠AOB=120°.
(1)求这条抛物线的解析式;
(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O,C,P为顶点的三角形与
△AOE相似,求点P的坐标;
(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A,E′B,求E′A+E′B的最小值.
【分析】(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出==,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长;
本文内容由快快网络小鸣整理编辑!