搜索
写经验 领红包
 > 职场

数学中常用的数学思想方法(数学中有哪些思想方法)

导语:数学学习过程中常用的5种思想方法,掌握了受益一生

在数学的学习中,掌握一些重要的方法将有助于我们更好地学习和快速解题,下面给大家介绍几种非常重要的数学方法,希望对大家有一定的帮助。

1.数形结合思想

说得简单点,就是根据数学题目所给的条件和结论之间的内在关系,即分析其代数的意义,又分析其几何的意义,把题目所展示出的数量关系与图形(画图)相结合起来,利用这样的结合,找到解题的思路,使问题得到解决,在函数部分,数形结合思想的重要性不言而喻,有时候在解决一些函数最值问题时不确定,需要画草图进行分析等。

2.分类讨论思想

在数学中,有时候根据题目所给出的条件,可能存在各种不同的情况,这时候就需要通过分类讨论,将所有可能出现的情况整合在一起,得出最后的结果,这种分类思考的方法,是一种重要的数学思想方法,也是一种重要的解题策略。在高中导数部分,运用到分类讨论思想的最多,其次还有关于三角形的分类、角的大小、运用正余弦定理求线段长度等都可能出现。

3.换元法

在解决题目的过程过程中,将一个或者某个字母的式子看成一个整体,用一个新的字母来表示,达到简化式子的目的。换元法可以把一个比较复杂的式子化简,把问题归结为比原来更基本的问题,达到化繁为简、化难为易的效果。多在求函数的解析式、分解因式等知识点中运用。

4.配方法

将一个式子设法构成平方式,然后再进行所需要的转化。当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。

5.待定系数法法

当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。

当然,数学的学习中,还有很多很多的数学方法,在这里知识简单列举几种重要、常用的方法,如果大家有其他的欢迎补充。

本文内容由小茹整理编辑!