三角恒等变换技巧口诀(三角恒等变换常用方法)
导语:三角恒等变换的技巧
三角恒等变换以三角函数基本关系、诱导公式、两角和与差的三角函数公式,倍角公式、半角公式等三角公式为基础,常见策略是:(1)发现差异;(2)寻找联系;(3)合理转换.基础思想是根据试题特点,灵活运用三角公式,使用配凑角、切化弦、降次或升幂等技巧,达到解决问题的目的.三角函数公式众多,方法灵活多变,同学们若能熟练掌握三角函数变换的技巧和化简的方法,可达到事半功倍的效果.下面就三角函数恒等变换的部分方法予以简单介绍,供大家参考.
一
直接利用公式
【方法点拨】根据式子特征,直接用公式展开是三角函数化简常用的方法,基本思路是异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.化简的标准是三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.在化简时要注意角的取值范围.
二
公式的逆用
【方法点拨】直接运用两角和与差的正弦或余弦公式常能将某些三角函数式化简,但深入观察三角函数式的结构特征,有时能巧妙地逆用公式,不仅丰富了解题技巧,而且过程简捷,不易出错.
逆用公式的一些常见变形:
三
切化弦
【方法点拨】切化弦一般适用于不知切值或式子不能构成有关正、余弦函数的齐次分式.不能整体化切时,一般考虑切化弦,其目的是将正切、余切函数用正弦、余弦函数表示,这是一种常用的解题方法.当涉及多种三角函数时,常用此法减少函数的种类.这里除用化切为弦外,也常用到化异角函数为同角函数的技巧.
四
弦化切
五
用已知角表未知角
【方法点拨】本题主要考查同角三角函数的基本关系、两角和与差的正弦公式的应用,转化过程中要特别注意符号的选取.
观察式子特征,若已知角与所求角之间存在和、差、倍角、互余、互补等关系,即可用已知角表未知角的方法来求解.
六
拆分角
七
配凑
【方法点拨】配凑法与方法五的基本思路一致,也是三角恒等变换中十分经典的一种方法.在解答时通过对目标式子中的角进行配凑,再利用三角公式和已知条件求得目标函数的值.在转换过程中同样要注意角的取值范围.
常见的凑角技巧:
总结
三角函数式的化简要遵循“三看”原则
(1)一看“角”.这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;
(2)二看“函数名称”.看函数名称之间的差异,从而确定使用的公式;
(3)三看“结构特征”.观察和分析结构特征,可以帮助我们找到变形的方向.
三角函数式的化简与求值是三角函数中的基础考点之一,也是高考中的常见题型,打好三角函数的基础对同学们高考也大有裨益.本文主要介绍了几种常用的方法,希望对同学们解决三角函数化简求值问题能有所帮助.
本文内容由小舻整理编辑!