搜索
写经验 领红包
 > 社会

求函数极限的几种方法(求函数极限的方法)

在生活中,很多人可能想了解和弄清楚求函数极限的相关问题?那么关于求函数极限的几种方法的答案我来给大家详细解答下。

求函数极限的几种方法(求函数极限的方法)

1、x→a时,有理函数极限,形如

p(ⅹ)/q(x),二者为多项式。

将a代替ⅹ,代入,直接求极限(分母不为0时)。

若分母为0,分子为0,分子分母因式分解,抵消掉为0的因式,再将a代入求极限。因求极限考虑a附近的情况,不包括a点,所以抵消前的函数与抵消后的函数在a点附近等价。

若分母为0,分子不为0,分数是一个趋于无穷的数,可以从a点左右两侧趋近,判断函数的左右极限,若左右极限相等,极限存在。

2、ⅹ→a,带平方根的极限,分子与分母乘以式子的共轭式,整理后,代入a求极限。

3、x→∞的有理函数极限,p(ⅹ)为多项式,在ⅹ趋于无穷时,p(ⅹ)/首项=1,也就是在x→∞,p(x)可以看作与其首项等价。定义多项式中,幂数最高的为首项。在x增加(减少)时,首项的增加(减少),逐渐越来越大,成为主要因素,其它项可以忽略。

(3ⅹ⁴+8x³-ⅹ²)/(-2ⅹ⁴+6),ⅹ→∞,等价于(3ⅹ⁴)/(-2ⅹ⁴)=-3/2。

温馨提示:通过以上关于求函数极限内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。