搜索
写经验 领红包

薄膜金刚石的化学机械抛光是什么(金刚石薄膜的制备工艺)

导语:薄膜金刚石的化学机械抛光

摘要

纳米晶金刚石(NCD)可以保留单晶金刚石的优越杨晶模量(1100GPa),以及在低温下生长的能力(<450C),这推动了NCD薄膜生长和应用的复兴。然而,由于晶体的竞争生长,所产生的薄膜的粗糙度随着薄膜厚度的增加而变化,阻止了NCD薄膜在需要光滑薄膜的器件中达到其全部潜力。为了减少这种粗糙度,薄膜已经使用化学机械抛光(CMP)进行了抛光。罗技摩擦聚光抛光工具配备聚氨酯/聚酯抛光布和碱性胶体硅抛光液已被用于抛光NCD薄膜。用原子力显微镜、扫描电子显微镜和x射线光电子光谱法对所得薄膜进行了表征。在25lm2时,均方根粗糙度值从18.3nm降低到1.7nm,在0.25lm2时,粗糙度值低至0.42nm。一种表面湿氧化、附着二氧化硅颗粒和随后剪切碳的抛光机制也被提出。

结果和讨论

形态学:图1显示了生长后和1-4hCMP薄膜的AFM图像,表1显示了每片25um2的5次扫描的平均粗糙度。可以看到,显微图重申了这种稳定的抛光,显示在25um2扫描中,粗糙度从18.3nmrms下降到1.7nmrms。图中也显示为蓝色。4D面积较小,为0.25um2,表明CMP和所使用的参数的局部粗糙度为0.42nmrms。三种抛光薄膜的去除率约为16nm/h。

图1-图中所示的生长和抛光薄膜的相应原子力显微镜显微照片。3.(A)随着生长后,(B)1小时CMP薄膜、(C)2小时和(D)4小时

X射线光电子光谱学:在被抛光的表面上确实形成了一系列结合相当强的分子物种(因此在XPS分析之前在样品的清洗中存活下来)。抛光1h后的f1s信号出现意外。4小时后,该信号被降低到几乎可以忽略不计的水平(见表1)。这种信号的来源很可能是用于抛光金刚石基底、化学溶液中的表面活性剂或溶剂残留物的聚合物基垫。所有这些源都可能是Cl、S和O光电子信号的额外来源。

表1–生长和1–4小时抛光薄膜的粗糙度值超过25um2

讨论:对于金刚石,XPS已经表明CMP会导致界面区域的一般氧化;增加了表面的碳基和羟基含量。与二氧化硅抛光中的羟基键平行,我们认为OH终止有助于二氧化硅颗粒与表面的键合,如图6所示,与二氧化硅CMP一样,粗糙的垫子表面会在二氧化硅颗粒上产生剪切力。由于SiAO、OAC和CAC的键合强度分别为800kJ/mol、1077kJ/mol和610kJ/mol[29],我们认为当施加这种力时,CAC键合会断裂,抛光膜表面。或者,氧化二氧化硅颗粒可以直接附着自己,而不需要中间湿化学氧化。由于这只是一个基于二氧化硅机制提出的模型,因此需要进一步的工作来验证和优化金刚石薄膜的CMP。

图6.建议的抛光机制。通过抛光液对端氢金刚石的湿氧化增加了表面的碳基(C=O)和氢氧化物(OH)的含量。与二氧化硅的CMP一样,氢氧化根离子促进二氧化硅颗粒附着在表面。通过粗糙抛光垫的优点对硅颗粒产生的剪切力,然后从表面去除碳原子,提供抛光。

结论

本文使用聚氨酯/聚酯毡和碱性胶体二氧化硅抛光液(SytonSF-1)对NCD薄膜进行了抛光。浆料或抛光布中均未使用金刚石基产品。最终在25um2以上的rms粗糙度值为1.7nm,在0.25um2以上的值低至0.42nm。所提出的抛光机制包括表面与抛光液的湿式氧化,促进硅颗粒附着在金刚石膜上,然后由于抛光垫的力而剪切颗粒。因此,CMP凭借其低温、操作简单、具有显著弓形抛光的晶圆,以及已经常见的CMOS行业供应,是一种有吸引力的薄膜金刚石抛光方法。

本文内容由小芦整理编辑!