搜索
写经验 领红包
 > 健康

52平行线及其判定(平行线的判定怎么讲)

导语:5.2.2平行线的判定(二)

5.2平行线及其判定(平行线的判定怎么讲)

教学目标1、掌握直线平行的条件,并能解决一些简单的问题;

2、初步了解推理论证的方法,会正确的书写简单的推理过程。

重点:直线平行的条件及运用

难点:会正确的书写简单的推理过程是

教学过程

一、复习导入

我们学习过哪些判断两直线平行的方法?

(1)平行线的定义:在同一平面内不相交的两条直线平行。

(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。

(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

二、例题

例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?

解:这两条直线平行。

∵b⊥ac⊥a(已知)

∴∠1=∠2=90°(垂直的定义)

∴b∥c(同位角相等,两直线平行)

你还能用其它方法说明b∥c吗?

方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明.

(1)(2)

注意:本例也是一个有用的结论。

例2如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE∥AC,请说明理由。

分析:由BE平分∠ABD我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出BE∥AC吗?为什么?

解:∵BE平分∠ABD

∴∠ABE=∠DBE(角平分线的定义)

又∠DBE=∠A

∴∠ABE=∠A(等量代换)

∴BE∥AC(内错角相等,两直线平行)

注意:用符号语言书写证明过程时,要步步有据。

四、课堂练习

1、如图,∠1=∠2=55°,试说明直线AB,CD平行?.

1题 2题

2、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?

五、布置作业::课本P17第7题,P18第12题(提示:画图说明)。

本文内容由小玥整理编辑!