整式与因式分解的公式(整式与因式分解的公式)
导语:中考总复习2:整式与因式分解
中考总复习2:整式与因式分解
【考纲要求】
1.整式部分主要考查幂的性质、整式的有关计算、乘法公式的运用,多以选择题、填空题的形式出现;
2.因式分解是中考必考内容,题型多以选择题和填空题为主,也常常渗透在一元二次方程和分式的化简中进行考查.
【考点梳理】
考点一、整式
1.单项式
数与字母的积的形式的代数式叫做单项式.单项式是代数式的一种特殊形式,它的特点是对字母来说只含有乘法的运算,不含有加减运算.在含有除法运算时,除数(分母)只能是一个具体的数,可以看成分数因数.单独一个数或一个字母也是单项式.
要点诠释:
(1)单项式的系数是指单项式中的数字因数.
(2)单项式的次数是指单项式中所有字母的指数和.
2.多项式
几个单项式的代数和叫做多项式.也就是说,多项式是由单项式相加或相减组成的.
要点诠释:
(1)在多项式中,不含字母的项叫做常数项.
(2)多项式中次数最高的项的次数,就是这个多项式的次数.
(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.
(4)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.
3.整式
单项式和多项式统称整式.
4.同类项
所含字母相同,并且相同字母的指数也分别相同的项,叫做同类项.
5.整式的加减
整式的加减其实是去括号法则与合并同类项法则的综合运用.
把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
6.整式的乘除
①幂的运算性质
②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
③单项式与多项式相乘:单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加.用式子表达:
④多项式与多项式相乘:一般地,多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.在运用乘法公式计算时,有时要在式子中添括号,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
⑤单项式相除:两个单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
⑥多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
要点诠释:
(1)同底数幂是指底数相同的幂,底数可以是任意的有理数,也可以是单项式、多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质
考点二、因式分解
1.因式分解
把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解.
2.因式分解常用的方法
(1)提取公因式法
(2)运用公式法
1⃣️平方差公式
2⃣️完全平方公式
(3)十字相乘法
3.因式分解的一般步骤
(1)如果多项式的各项有公因式,那么先提公因式;
(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;
(3)对二次三项式,应先用十字相乘法分解,不行的再用求根公式法;
(4)最后考虑用分组分解法及添、拆项法.
要点诠释:
(1)因式分解的对象是多项式;
(2)最终把多项式化成乘积形式;
(3)结果要彻底,即分解到每个因式都不能再分解为止.
(4)十字相乘法分解思路为“看两端,凑中间”,二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.
本文内容由快快网络小涵创作整理编辑!