> 育儿
怎样用二重积分计算旋转体体积的公式(用二重积分求旋转体积)
问题 设D为一平面区域,L为不穿过D内部的共面直线,求D绕L旋转一周所成旋转体的体积。
结论 由连续曲线y=f(x),其中f(x)≥0,以及直线x=a,x=b及x轴所围成的曲边梯形D绕不穿过曲边梯形内部的共面直线L:Ax+By+C=0旋转一周所成的旋转体的体积为:
证明 曲边梯形D上任取一点P(x,y),则x,y的变化范围为0≤y≤f(x);a≤x≤b.点P(x,y)到L的距离
在点P(x,y)处分别给出x,y的微分dx,dy,得曲边梯形上的面积微元dσ,且知dσ=dxdy。面积为dσ的面积微元绕L旋转所形成的立体体积微元
所以有
几种特殊情形
(1) D: g(x)<y<f(x), a<x<b时
(2) D: u(y)<x<v(y), c<y<d时
(3) D: r1(q)<r<r2(q), a<q<b时
(4) D: 0<y<f(x), a<x<b, 且L为y轴时
(5) D: 0<r<r(q), a<q<b, 且L为x轴或极轴时
(6) D: 0<y<f(x), a<x<b, 且L为x轴时
例子
1. 求椭圆x2+2y2=1绕直线x+y=2旋转一周所成旋转体的体积。
解 平面区域D可表示为:
区域D与直线x+y=2的位置关系如下图:
对区域D内任意点都有:x + y –2<0,所以
2. 求心形线r=4(1+cosθ)及射线θ=0及θ=π/2所围成的图形绕极轴旋转一周所成旋转体的体积.
解 区域D为:
0<r<4(1+cos θ), 0<θ<π/2
对D内任意点都有y>0,所以有
免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请与我联系,一经查实立刻删除内容。本文内容由快快网络小嫣创作整理编辑!