搜索
写经验 领红包
 > 时尚

高中数学巧用奇函数的性质解决复杂函数问题的例子(奇函数解题技巧)

我们常常在解题的过程中发现题目中所给出的解析式非常复杂,它是由一次函数、二次函数、指数函数、对数函数、幂函数或者三角函数等其中两个或数个构成。

其实遇到这种复杂的函数解析式,不用担心,因为这种复杂函数的解析式,往往可以将其拆分为若干部分,然后再研究每一部分的奇偶性、对称性和单调性,问题就会迎刃而解。对于这种函数我们有以下结论:

(1)若f(x) 为奇函数,则有f(x0) + f(-x0) = 0,特别地有f(x)max + f(-x)min =0;

(2)对于函数f(x),如果我们可以拆成f(x) = 奇函数+a(a为常数)的形式,则必有f(x0) + f(-x0) = 2a,特别地有f(x)max + f(-x)min = 2a;

高中数学

(3)牢记高考中常见的奇函数

好了,今天的内容就分享到这里,如果您有疑问,可以在文章下方留言,欢迎继续关注,精彩还将继续!

免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请与我联系,一经查实立刻删除内容。本文内容由快快网络小媛创作整理编辑!