搜索
写经验 领红包
 > 地理

导数的隐零点问题专题(导数隐零点问题的破解策略)

导语:探究导数中的隐零点问题

函数是高中数学的重要研究对象,函数的零点问题,尤其是超越函数的零点问题成为函数压轴题的命题热点.有一种零点客观存在,但解不出来,我们通过研究它的取值范围、利用它满足的等量关系进行消元、换元、降次等方式能够达到解决问题的目的,这类问题就是隐零点问题.此类问题往往要借助零点存在性定理、函数的单调性,找到函数零点的有效位置,一般对零点设而不求,通过整体代换或消超越式进行化简,再结合其他条件来解决问题。

方法整理

观察总结以上隐零点问题的求解过程,可以得到解决此类问题的一般策略:

第一步:用零点存在定理判断导函数零点的存在性,列出零点满足的方程,并结合函数的单调性得到隐零点的取值范围.当函数的隐零点不可求时,首先可用特殊值进行“投石问路”.特殊值的选取原则是:(1) 在含有lnx 的复合函数中,常令x =e,尤其是令x=e”=1进行试探;(2) 在含 e 的复合函数中常令x=ln k(k >0),尤其是令x =ln1=0进行试探.

第二步:以零点为分界点,说明导函数符号的正负,进而得到题设函数最值的表达式.第三步:将零点满足的方程适当变形,利用隐零点具有的性质整体代入函数最值表达式中进行化简,达到求函数最值、求参数取值范围、证明不等式、解不等式等目的使问题获解

免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请与我联系,一经查实立刻删除内容。本文内容由快快网络小涵创作整理编辑!