可能性教案锦集十篇
可能性教案锦集十篇
作为一名默默奉献的教育工作者,常常要写一份优秀的教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?下面是小编为大家收集的可能性教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
可能性教案 篇1
教学内容
义务教育课程标准实验教科书《数学》三年级上册104页例1、例2及相关练习
设计理念
根据新课程标准和教材的要求,我利用多媒体教学以及让学生通过小组讨论、独立解决问题以及动手操作等形式让学生感受什么事件是可能发生的,什么事件是不可能发生的,什么事件是一定发生的,达到本课的教学目的。
教学目标
1、通过猜测和简单试验,让学生初步体验事件发生的确定性和不确定性,初步能用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性。
2、培养学生的'猜想意识、口语表达能力及合作学习的能力。
3、培养学生初步的判断和推理能力。
4、让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验;激发学生学习数学的兴趣及培养良好的合作学习态度。
教学重点
1、通过猜测和简单试验,初步体验事件发生的确定性和不确定性。
2、培养学生的猜想意识、口语表达能力及合作学习能力。
教学难点
正确用“一定”、“可能”、“不可能”等词语描述事件发生的可能性。
教具、学具准备
教学光盘;每组准备A盒(里面放有6个蓝色的玻璃珠)、B盒(里面放有红、黄、绿色玻璃珠各2个)各1个;每组2个信封(内装有题卡);玻璃珠。
教学过程
一、游戏激趣,导入新课
小朋友们,你们喜欢玩游戏吗?这节课老师和一们一起玩好吗?
1、游戏活动一:“猜一猜”
师:小朋友们,今天老师想跟你们玩的第一个游戏是“猜一猜”。老师这里有一颗漂亮的玻璃珠(举起双拳),它就在我其中的一个拳头里,你们猜猜它会在哪只手里?
生答……
师:看来大家的意见不一样,老师帮帮你们吧!(教师慢慢张开空着的手,再次握紧拳头)
生再次回答。
师挥动拿球的一只手问:为什么你们这次那么肯定玻璃球就在这只手里呢?(指名回答)
师:在日常生活中,有些事情我们不能肯定它发生的结果,有些事情可以肯定它发生的结果,类似的例子还有很多,大家有兴趣研究吗?这节课我们一起来研究事情发生的可能性。(板书课题:可能性)看看哪个小组研究得最好,将得到一颗“集体智慧星”。
二、合作学习、探究新知
(一)游戏活动二:石头剪子布
师:小朋友们,你们会玩“石头剪子布”的游戏吗?老师跟你们一起玩好吗?(开始游戏)游戏结束后,教师问:谁赢了老师?谁输给了老师?(让学生举手表示赢和输)接着问:还有些同学没有举手,为什么?(指名回答)
师:有输、有赢、还有平的。那么,我们再来玩一次好吗?(让几个学生回答游戏结果)
师:你在开始游戏时想赢老师吗?结果呢?为什么想赢又赢不了?(指名回答)如果咱们再玩一次,猜一猜,结果会怎样?(引导学生说出可能输、可能赢、可能平并板书:可能)
可能性教案 篇2
教学内容:课本第96、97页的第4-7题。
教学目标:
使学生进一步掌握用分数表示实际生活中简单事件发生的可能性的方法,并能根据事件发生的可能性大小的要求,设计相应的活动,提高了学生用数表达和交流信息的能力。
教学重点、难点:根据事件发生的可能性大小的要求,设计相应的活动。
教学过程:
一、复习
师:你能举例说说上一节课我们学习了什么?
二、新课。
1、出示练习十八第3题。
先让学生说出摸到每张卡片的可能性,再说出摸到奇数和偶数的可能性。让学生先写出答案,再指名说说思考的过程。
2、出示练习十八第4题。
第(1)题可以让学生根据题意独立完成。第(2)题可以先让学生数一数这个转盘被平均分成了多少份,再启发学生思考:要使指针转动后停在红色区域的可能性是1/2,涂红色的份数应该占10份的几分之几?要使指针转动后停在绿色区域的可能性是2/5。又应把几份涂成绿色?
3、出示练习十八第5题。
应引导学生从分数的含义出发,找到符合题义的放法。
4、出示练习十八第6题。
先组织学生讨论:怎样才能列举出“石头、剪刀、布”游戏中可能出现的各种情况?明确方法后,再让学生把题中的表格填写完。
5、出示练习十八第7题。
让学生独立思考回答,并说说怎样想的。
三、应用拓展。
1、按要求进行设计。
(1)有两个正方形转盘,任意转动指针,要使A盘指针停在红色区域的可能性为1/4,使B盘指针停在红色区域的.可能性为3/8。请你设计各转盘颜色区域,把你的设计画出来,并涂上颜色。
(2)在下面的口袋中放入若干个白球和黑球,任意摸40次,摸出白球的可能是16次(每次摸出球后仍放回)。按照这样的可能性大小,请你在袋中画出两种球的个数。(“○”为白球,“●”为黑球)
学生在练习纸上独立完成后,进行交流,要求说说自己的想法(这两题的答案都一唯一)。
2、:可能性和生活联系很密切,课后请同学们做个有心人,用数学的眼光去观察生活,找找生活中哪些事件和可能性有关。
3、机动题:
学校要在我们六年级某个班级中任选一位同学接受昆山电视台记者的采访,如果这个班男生被选中的可能性是3/5,已知这个班的男生有24人,那么这个班的女生有多少人?
可能性教案 篇3
教学目标:
1、让学生在猜想、实验验证、得出结论的过程中,进一步体验不确定事件发生的可能性的大小,能对可能发生的结果和可能性的大小作出判断,并正确使用恰当的词语描述发生可能性的大小,与同学进行交流。
2、在活动交流中,培养学生合作学习的意识及能力,使学生能够运用所学的知识解决实际问题。
教学重点:通过具体的操作活动,使学生进一步体会事件发生的“可能性”。
教学难点:帮助学生正确建立对“等可能性”的理解;让学生能够利用事件发生的可能性的知识解决实际问题。
教学准备:课件,每组用的同型不同色的小球;转盘原材料;记录表等。
教学实录:
一、复习导入
介绍两种颜色的乒乓球。
师:你喜欢什么颜色的球?如果我把一只黄球与一只白球放在这个口袋里,让你来摸一摸,你能摸到你喜欢的颜色吗?
生:大概,可能摸到。
二、初步认识可能性大小
1、猜一猜。
师:老师带来的口袋里放了放5个黄球和1个白球,如果让你来摸一摸,你估计情况会怎么样呢?
生1:很容易摸到黄球。
生2:也可能摸到白球。
生3:我认为摸到黄球的次数会多一些。
师:情况真是这样的吗?有什么办法能让我们知道自己猜得对不对?
生:动手摸一下就知道了。
2、试一试。
师:那我们就来亲自动手试一试吧。
教师呈现活动要求:“每人每次任意摸出1个球,记录员记录摸得的结果,把球放回口袋摇一摇,换下一位继续摸。每组一共摸20次。”
师:按照要求,摸球时我们要注意些什么呢?
生1:不能抢。
生2:不能偷看。
生3:是任意摸、随便摸的意思。
……
小组活动,教师巡回指导。
3、说一说。
师:请按小组汇报一下,并说一说你们是怎样统计的。
生1:我们是用打勾的方法统计的;
生2:我们是用画横线的方法统计的;
生3:我们是数正字的;
师:能介绍一下你们小组是如何用数正字的方法进行统计的吗?
学生介绍方法。
师:你们觉得数正字的方法怎么样?
生1:简洁,一目了然。
生2:一个正字五画,数起来很方便。
师生根据统计表共同分析结果。
4、议一议。
师:通过摸球活动,你觉得能验证你刚才的猜想吗?
生:能。
师:你能得出什么结论吗?
生:摸到黄球的可能性大。
师:为什么会这样呢?
生:黄球多比白球多,摸到黄球的可能性就比白球的可能性大。
师:也可以怎么说?
生:摸到白球的可能性比黄球小。
教师板书:可能性大小
三、理解等可能性
1、变式思考,明晰概念。
教师出示图并提问:口袋里装着5个黄球和一个白球,任意摸,情况会怎样呢?
生:摸到白球
师:一定是白球吗?
生:不一定,可能是白球,也可能是黄球。
师:摸到白球的可能性会怎么样呢?
生:摸到白球的可能性比黄球大。
2、实验比较,加深感悟。
教师出示图并提问:如果把口袋里的球换成4个白球、2个黄球呢?
生1:摸到白球的可能性比黄球大一些。
生2:黄球摸到的次数可能比白球少。
师:让我们来继续通过试验验证我们的想法吧。
学生动手实验,教师针对各小组的不同情况,分别给予指导。
统计各小组摸到不同颜色球的情况,记录并分析。
师:同样是可能性有大有小,你有什么新的发现吗?
生1:摸到黄球和摸到白球的次数相差没那么大了;
生2:因为白球和黄球相差没那么多了,摸到白球的可能性也就没那么大了。
3、促进迁移,深化理解。
教师出示图并提问:如果是3个黄球和3个白球,任意摸球,又会怎么样呢?
生:可能摸到白球,也可以摸到黄球。
师:现在摸到这两种球的可能性是……?
生:一样的`,相等的。
师:为什么?
生1:因为它们的个数一样的。
生2:球的个数相等,被摸到的可能性相同。
……
教师板书:相等
4、引发探究,鼓励创新。
教师出示口袋,里面放着5个白球。
师:要使摸到黄球的可能性比白球大一些,怎么放黄球?
生1:摆6个。
生2:摆6-9个。
师:这几种摆法中,哪一种只多那么一点点?
生:应该摆6个。
师:要使摸到黄球的可能性比白球大得多,怎么放呢?
生:摆1个,2个,3个都可以。
师:你们也能利用今天所学的知识提出类似的问题吗?
生:摸到的黄球的可能性和摸到的白球的可能性差不多。
生1:6-7个。
生2:摸4-5个也行。
生3:摸到黄球的可能性和摸到白球的可能性相等,要摆几个黄球?
生4:5个。
四、体会等可能性的公平性
1、感受等可能性在实际生活的运用
播放录像:足球比赛抛硬币选择场地的情境。
师:谁知道裁判在干什么?
生:用抛硬币的方法选场地,还可以确定谁先发球。
师:你觉得用抛硬币的办法决定场地和谁先发球,是不是公平合理呢?
生1:因为硬币有两个面,只要两个队长选择一个面就可以了,很方便。
生2:抛到正面与反面的可能性一样的,就比较公平。
师:类似于这样的公平竞争的方法还有哪些呢?
生1:铁锤、剪刀、布。
生2:掷骰子。
……
2、设计等可能性。
多媒体播放两学生下棋场景,两小朋友正用掷骰子的方法决定谁先走棋。
画外音:“掷到六点朝上就你走,掷不到六点就我走。”
师:如果是你,你愿意按这个规则与他下棋吗?
生1:不愿意。因为六点只有一面,甩不到六的有好几面,不公平。
生2:六点很难抛到,1、2、3、4、5很容易抛到。
师:如果你来下棋,同样用掷骰子的方法,你能设计一个公平的规则吗?
生1:如果掷到单数就你走,扔到双数就我走。
生2:如果掷的点数大,你大你就走。
生3:如果掷到1,2,3面,你走,如果掷到4,5,6我走。
生4:如果掷到单数,或是双数也可以的。
师:为什么这些规则你愿意接受呢?
生:因为它们的可能性相等。
五、综合应用可能性大小的知识。
师:老师前两天我去逛商场,看到商场里正用转盘搞一场“转、转、转,转出幸运星”的有奖促销活动,我们来看一看。
电脑出示转盘
教师先指导学生观察转盘,并说一说转动这个转盘,结果有几种可能。
师:如果你是商场的经理,你会制定怎样的中奖规则?
生1:绿色没有奖,红色一等奖。
生2:绿色三等奖,紫色二等奖,红色一等奖……
师:我注意到,你们都是把红色定为一等奖,为什么呢?
生1:因为转到红色的可能性比较少。
生2:一等奖奖品贵,应该由少数人得,不然老板就亏了。
……
师:其它几个商场的老板看到这个转盘,也都想用转盘搞一场有奖促销的活动,不过每个商场老板的想法不太相同。你能不能根据老总的要求来设计一个转盘?
分小组按要求制作转盘。
交流各组制作的转盘。
师:如果你是消费者,你最希望去转哪个转盘?为什么?
生1:我最希望转我们自己的转盘。
生2:我最希望转这个,因为获奖的可能性很大。
生3:是,要求中奖的可能性很大,不中奖的可能性很小。
师:如果你是老板,你希望设计哪个转盘?
生:当然希望是得大奖的人数少的了。
师:想想这几个转盘都是按哪个要求制作的?
生:中奖和不中奖的可能性相等。
师:在生活中,象这样的事例是随处可见,关键是要靠我们用明亮的双眼去寻找、去发现,用你智慧的大脑去分析、去判断。
可能性教案 篇4
[教学内容]
教材第94、95页的内容,第96页练习十八的第1、2题。
[教学目标]
1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、使学生在学习过程中乐意与他人交流自己的想法,并获得一些成功的体验。
[教学重点]
会用分数表示简单事件发生的可能性大小。
[教学难点]
理解并掌握用分数表示可能性大小的基本思考方法。
[教学过程]
一、谈话
你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。
大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)
[教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的.交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的同时一定会产生自豪感的,同时进行了思想教育。]
二、新课教学
1、教学例1。
谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)
你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的想法先和你同桌交流一下。
全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。
老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。
[教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]
可能性教案 篇5
可能性
第2课时
学习内容:
第94、95页例3、例4及课堂活动,练习二十三第4~6题。
学习目标:
1.知道事件发生的可能性有大有小,会求简单事件发生的可能性。
2.通过实践操作,体验事件发生的可能性及游戏规则的公平性。
3.会求简单事件发生的可能性。
教学重点:
会求简单事件发生的可能性及游戏规则的公平性。
教学难点:
让学生亲身经历事件发生的过程来感知可能性有大有小。
教具准备:
多媒体课件
学习方法:
小组合作、探究学习
教学过程:
一、复习旧知
二、自主探索,学习新知
1.教学例3。
课件出示例3:有10张倒扣着的相同的卡片,其中有4张画的燕子,3张画的大象,2张画的老虎,1张画的喜鹊,打乱后从中任意拿1张。
(1)看了这些信息你有什么感想?
(2)小娟喜欢燕子,她一定能拿到画有燕子的卡片吗?
(3)拿到画有燕子的卡片的可能性和画有大象的卡片的可能性哪个大?为什么?
(4)分组游戏,并做好记录,然后集体汇报。
(5)思考:可能性的大小和什么有关系?
(6)猜想:任意拿1张,拿到燕子的可能性是( ),拿到大象的可能性是( ),拿到老虎的可能性是( ),拿到喜鹊的可能性是( )。
(7)汇报每组实验数据,进行分析计算,验证猜想。
(8)教师小结求简单事件发生的可能性的方法。
2.教学例4。将一副扑克牌的13张方块牌和匀,从中任意抽出1张,用“可能”“不可能”“一定” “偶尔”“经常”等来描述抽牌的`情况。
(1)认真审题,弄清题意:说说例4让我们做什么?
(2)小组合作进行实验。
(3)集体汇报实验结果。
(4)填一填
( )抽到方块2,( )抽到黑桃A,( )抽到方块A,( )抽到方块。。。。。。
3.教师小结:在我们生活中经常会用“可能”“不可能”“一定” “偶尔”“经常”等来描述生活中的一些现象。
三、运用新知,巩固提高
1、小林做5个纸团。并将其中几个纸团做上记号。小丁任意摸出1个并作记录,放回和匀后再摸
(1)小丁摸了40次,将结果记录如下
(2)分析上表中的数据,得出什么结论?
(3)两人交换角色。小丁做纸团并做记号,再由小林来摸并记录
两人交流对这次游戏活动的感受。
2、盒中有形状相同的红色小棒8根,黄色小棒2根。小兰从盒中任意取出1根小棒,取出哪种颜色的小棒的可能性大?
选择“不可能”、“偶尔”、“经常”填空。
(1)( )取出红色小棒。
(2)( )取出黄色小棒。
(3)( )取出白色小棒
四、学生质疑,教师总结
教师:通过这节课的学习,谈一谈你有哪些收获?
五、课堂作业:练习二十三第4~6题。
家庭作业:第95页课堂活动。
板书设计:
可能性的大小
可能性教案 篇6
教学内容:
人教课标版教材三年级上册第八单元(P110—111)
教学目标:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、情境引入,回顾再现
师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)
师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)
生1:张晨做丢手绢游戏的可能性大,因为……。
生2:……
生3:……
师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)
(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)
二、分层练习,强化提高
师:首先,看一看同学们能不能做一名合格的小法官。(出示)
1、基本练习
(1)我是小法官。(快速抢答,看谁说的又对又快。)
①一周有七天。()
②人的一生中一定要吃饭。()
③小明长大后一定能当飞行员。()
④下周一一定是阴天。()
(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)
师:刚才同学们的表现真棒!下面我们来做个游戏好吗?
2、综合练习
(1)课本110页第8题。
师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。
①让生说一说掷出后可能出现的结果有哪些?
②猜测试验后的结果会有什么特点?
③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)
④说说从统计数据中发现了什么?
⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。
(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)
(2)课本110页第9题。(出示主题图)
师:过元旦的时候,
三、一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?
生:我最有可能表演讲故事。
师:为什么?
生:因为讲故事的签比较多。
师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?
生:我觉得最有
可能抽到唱歌,最不可能抽到跳舞。
(3)课本111页第10题。
师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)
①生猜。
②简单统计猜测情况。
③揭示结果。
④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)
师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?
3、提高练习
(1)课本111页第11题。
师:请同学们拿出自制的正方体来,在它的6个面上涂上红、蓝两种颜色,要使掷出的红色的`可能性比蓝色大,应该怎样凃?
①生动手涂色。
②小组展示交流,说想法。
③集体展示交流凃法。(只要涂色后正方体的红面比蓝面多就行。)
(2)课本111页第12题。(出示)
①生独立思考应怎样填。
②小组合作完成。
③集体展示交流。(只要写有数字“1”的卡片数量最多,写有数字“5”的卡片数量最少就行。)
(设计意图:让学生通过动手、动脑,合作交流,汇报展示,使学生积极的参与到数学学习活动中,进一步体会事件发生的可能性是有大有小的。)
三、自主检测,评价完善
(一)自主检测
师;刚才同学们用所学的知识,解决了这么多的数学问题,真了不起。老师还为同学们准备了一组测试题,请同学们赶快大显身手吧!(让生做在测试纸上)
1、选择题。
①有一个盒子,里面装着4个白球和5个黄球,任意从盒子中取出一个,( )的可能性较大。
A、白球 B、蓝球 C、黄球
②把一些白色围棋子放在书包里,从中任意摸出一个,( )是白棋子。
A、可能 B、一定 C、不可能
③从8个红色的的玻璃球和2个黄色的玻璃球中任意摸出一个,找到( )色的玻璃球可能性更大些。
A、红色 B、蓝色 C 黄色
④从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到( )玻璃球可能性更小一些。
A、白色 B、蓝色 C、红色
⑤把3个白球和5个红球放在盒子里,任意摸出一个,( )是蓝色的。
A、可能 B、一定 C、不可能
2、按要求凃一涂
(1)摸出的一定是
(2)摸出的不可能是
(3)摸出的可能是
(二)、评价完善。
生汇报答案,其余自我核对,纠正错误。
(设计意图:通过自主检测,进一步强化“双基”,找出存在的问题,订正错误,并体验学习成功的喜悦。)
四、归纳小结,课外延伸
1、归纳小结
师:这节课主要练习了什么内容?你最大的收获是什么?你觉得你表现的怎样?
可能性教案 篇7
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)
2、引出“不可能”、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)
(不可能--确定)
3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的.情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的
可能性就差不多了。
三、生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性教案 篇8
教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的.培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
可能性教案 篇9
教学目标:
1、能列出简单实验所有可能发生的结果,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手操作能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动增强
学生间的交流,培养学习兴趣。
教学重、难点:
能列出简单实验所有可能发生的结果,知道事件发生的可能性是有大有小的。
教学用具:
多媒体课件、小棋子若干、转盘、彩笔。
教学过程:
一、创设情境,生成问题
1、复习“一定、不可能、可能”
(师出示两盒棋子,1号盒有6个蓝棋子,2号盒有1个蓝棋子,5个红棋子。)
师:哪个盒子里一定能摸出蓝棋子?
生:1号盒一定能摸出蓝棋子。
师:哪个盒子不可能摸出红棋子?
生:1号盒不可能摸出红棋子。
师:哪个盒子可能摸出红棋子也可能摸出蓝棋子?
生:2号盒子可能摸出红棋子也可能摸出蓝棋子。
2、导入
师:现在老师如果从2号盒内摸一个棋子,同学们猜一下会是什么颜色?(生大部分猜红棋子)
师:为什么猜红棋子的多,猜蓝棋子的少呢?真是这样的吗?这节课我们就来研究可能性(二)(板书课题:可能性二)
(设计意图:这样导入不仅调动了学生的积极性,复习了旧知,而且还生成了新的数学问题,从而自然的过渡到新知的学习中来。)
二、探索交流,解决问题
(一)、教学例3
(课件出示例3第一幅图)
师:下面请各小组拿出已准备好的学具,让我们通过摸棋子游戏来验证同学们的猜测吧。(盒里装着5红1蓝6个棋子)
(生跃跃欲试)
1、小组合作验证猜测结果
师:请同学们先认真看一下活动要求
(1)出示活动要求:
A:组长分好工有摸棋子的,有记录的,组员按顺序轮流摸棋子。
B:每次摸棋子前先将棋子摇匀,摸棋子时不能偷看。
C:摸出一个棋子记录好颜色,再放回去,重复20次。
D:在摸棋子的过程中想一想:你们组摸到棋子的情况有哪些?为什么会出现这种情况?
(设计意图:将活动要求展示出来加以强调,有利于学生良好行为习惯的养成。)
(2)小组活动
A:学生摸棋子并记录结果。(师巡视,随机指导)
B:组内交流
师:现在把你的想法在小组内交流一下吧。(组内交流,师巡视,随机参与讨论)
(讨论中让学生明确:每次摸棋子的时候,每个棋子都有被摸出的可能;每次摸到棋子的颜色是不确定的,可能摸出红棋子也可能摸出蓝棋子。)
(3)集体汇报交流
A:小组汇报
师:你愿意把你们组交流的情况展示给大家吗?(生:愿意)
师:你是第一个上来的,真勇敢!
生1:我们摸到的棋子,有红色的也有蓝色的,因为盒内既有红棋子也有蓝棋子。
师:其他小组有补充吗?
生2:我发现我们组有时摸出红棋子有时摸出蓝棋子,但是摸出红棋子的次数多,因为盒内的红棋子比蓝棋子多。
师:说得不错!谁还想说?
生3:我发现我们组摸出的棋子既有红色的也有蓝色的.,红棋子多所以摸到红棋子的机会大。
生……
师:说得真不错!其他小组也是这种结果吗?(生:是)
B:共同优化,形成结论
师:通过交流你发现了什么规律?(生思考)
生1:虽然各小组摸到红棋子与白棋子的次数不一定相同,但都是摸出红棋子的次数多,摸出蓝棋子的次数少。
师:说得好!
生2:每个小组都是摸出红棋子的次数比摸出蓝棋子的次数多,摸出蓝棋子的次数比摸出红棋子的次数少。
师:说的很详细!还有要说的吗?
生3:各小组摸棋子的情况都说明,红棋子多所以摸出红棋子的次数多。
师:嗯,简单明了。
生……
师强调:同学们说的“摸出红棋子次数多摸出蓝棋子次数少”,就是我们今天学习的“可能性大小”(板书:可能性大小)
师小结:每一个棋子被摸到的可能性是相等的,红棋子和蓝棋子的数量不一样,所以摸出红棋子的可能性与摸出蓝棋子的可能性大小就不一样。多次试验证明红棋子的数量多摸到红棋子的可能性大;相反,蓝棋子的数量少摸到蓝棋子的可能性就小。(随机板书)
师:同学们通过自己的努力证明了自己的猜测是正确的。老师真为你们高兴!
(设计意图:把课堂交给学生,学生通过“摸一摸、想一想、说一说”经历知识的形成过程,逐步丰富对不确定现象和可能性大小的体验。)
2、根据结论推测
师:如果现在让你再摸一次,你一定能摸出红棋子吗?
生:不一定。
师:下面请同学们实际摸摸看(生每人摸一次)
(可能既有摸到红棋子的,也有摸到蓝棋子的)
师:虽然我们知道了摸出红棋子的可能性大,但在单次试验中我们并不能确定会摸出红棋子。
(设计意图:让学生再摸一次,引起认知冲突,让学生进一步感受不确定现象的特点,体会概率虽然能帮我们了解不确定现象的规律,但并不能提供准确无误的结论。)
3、应用
师:下面看看同学们掌握的怎么样了?
A:(课件出示p106做一做左题)
师:你知道每种颜色占整个圆的几分之几吗?生答
师:那么指针停在哪个区域的可能性大呢?生答
B:独立解决右题,集体订正。
(设计意图:既让学生明确数量多少与可能性大小的联系,也为以后学习可能性的精确值作铺垫。)
(二)教学例4
(课件出示例4插图)
师:请同学们看例4,刚才我们解决了两种颜色的问题,现在是三种颜色的了,你敢挑战吗?(生:敢)
师:很好!如果让你只摸一个棋子可能是什么颜色的呢?请在小组内交流一下。(生交流)
指名汇报:如果只摸一个棋子可能是红色的,可能是蓝色的,也可能是绿色的。
可能性教案 篇10
学习目标:
1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;
3.培养简单推理的能力,增强学习数学的兴趣。
教学重点:
用分数表示可能性的大小,理解分数表示可能性的实际意义。
教学难点:
灵活运用可能性的有关知识,解释并设计游戏活动。
教具准备:
多媒体课件
学习方法:
动手操作、实验法、观察思考
教学过程:
一、复习可能性的含义以及可能性的大小
1.出示下列四个图形:(投影出示)
2.提出问题:从( )号口袋中摸出的一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。
追问:从上面哪两个口袋中摸球的结果是确定的.,哪两个口袋中摸球的结果是不确定的?(确定 不确定)
小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
揭题:今天我们就来一起复习可能性。(板书:可能性)
3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的可能性更大一些呢?
提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?
从③号口袋中摸到红球的可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。
二、指导练习。
1.做第1题。(投影出示)
指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?
先让学生各自连一连,再指名说说思考过程。(多媒体演示)
2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。
(1)任意摸1个球,下面几种情况是不可能发生,还是一定发生或可能发生?
温馨提示:通过以上关于可能性教案锦集十篇内容介绍后,希望可以对你有所帮助(长按可复制内容)。