《比的基本性质》说课稿
《比的基本性质》说课稿
作为一位无私奉献的人民教师,时常需要编写说课稿,通过说课稿可以很好地改正讲课缺点。那么大家知道正规的说课稿是怎么写的吗?以下是小编精心整理的《比的基本性质》说课稿,欢迎阅读与收藏。
《比的基本性质》说课稿1
尊敬的各位评委老师:
大家好!
我是xx号考生,今天我说课的内容是义务教育课程标准实验教科书青岛版小学数学五年级下册第二单元信息窗3的教学内容—分数的基本性质(板书)。
一、说教材
分数的基本性质是学生在学习了分数的初步认识,掌握了分数的意义,分数与除法的关系,真分数,假分数,带分数的基础上进行学习的。本节课通过设计科普展板的情境学习分数的基本性质,为今后学习分数四则运算和解决有关分数的问题打下基础。
二、说教学目标
(1)知识与技能目标:结合具体情境,理解和掌握分数的基本性质,能运用分数的基本性质找出与一个分数大小相等的分数。
(2)过程与方法目标:在探索分数的基本性质的过程中,培养学生观察、概括的能力,进一步发展学生的数感及合情推理能力。
(3)情感态度与价值观目标:运用分数的基本性质解决实际问题的过程中,使学生感受到数学与生活的密切联系,激发学生的学习兴趣,增强学生的自信心,培养学生的应用意识。
三、说教学重难点:
根据对教材的分析以及学生的特点,本节课我确定的教学重点是:理解和掌握分数的基本性质。
教学难点是:自主探索,发现,归纳分数的基本性质,运用分数的基本性质解决实际问题。
四、说教学方法
新课标指出教师是学习的组织者、引导者、合作者。根据这一理念,本节课我主要采用了情境教学法、引导发现法(实践操作法),这些方法能充分调动学生的积极性,激发学生的求知欲,培养学生的创新精神。
自主探究,合作交流、动手操作是本节课学生学习新知识的主要方法。学生在具体情境中从数学角度发现问题,提出问题,感受数学来自生活的道理。通过动手操作、动脑思考、合作交流使其获得成功的体验,加深对知识的理解和掌握。
五、说教学过程:
教育家布鲁纳说过:“认识是一种过程,而不是一种产品”。根据这一思想,本节课我以学生为立足点,设计如下教学过程:
(一)创设情境,提出问题
新课标提倡要创设情境,激发学生的积极性。课开始,我跟学生交流,你们参加科技活动时都设计过哪些科普展报呢?学生讨论交流后,我利用多媒体课件出示学校科教活动中同学们设计的科普展板的情境图,引导学生仔细观察每块展板文字与图片所占比例,从数学角度提出问题。学生观察思考后可能提出:“每块展板的图片部分占整个版面的几分之几?”等有价值的数学信息。
爱因斯坦说过:提出一个问题往往比解决一个问题更重要。通过生动形象的情境,让学生从数学角度提出问题,使学生产生认知的兴趣,调动学生自主探索解决问题的热情,从而有效开展数学学习活动。
(二)研究素材,猜想规律
一、教学第一个红点,学习分数的基本性质
教师出示问题:“每块展板图片部分占整个版面的几分之几?”,让学生独立解决。通过思考后学生得出:“把每块展板看作单位“1”,图片部分分别占展板的1/2,2/4,4/8。教师追问学生这三个分数有什么大小关系?学生通过自己的认识猜测大小后,教师让学生利用彩笔和纸条涂一涂,画一画分别表示出这三个分数,通过涂一涂,画一画,让学生展示交流,学生直观的发现这三个分数是相等1/2=2/4=4/8。这时,教师抓住时机提出问题:“分数大小不变,但分子,分母是按照什么规律变化的呢?“先让学生独立思考,小组交流,然后全班汇报。有的学生发现:“1/2的分子分母同时乘2就得到了2/4,分子分母同时乘以4就得到了4/8。而有的学生发现4/8的分子分母同时除以2就得到了2/4,同时除以4就得到了1/2(板书)。教师再写出一组分数2/5=6/15=12/30,让学生举这样的例子。请同学仔细观察这三组相等的分数,发现了什么?通过观察、讨论交流。学生发现:分子和分母同时乘以或除以相同的数,分数大小不变。教师随即向学生揭示,像这样一个分数的分子和分母同时乘以或除以相同的数,分数的大小不变;这就是分数的基本性质。教师引导学生质疑“为什么0除外”学生进行讨论,回答:分数的分子分母同时乘以或除以0,分数就没有意义。我对学生的回答进行肯定,进一步强调分数的基本性质。
数学学习特别关注学生的体验。这样的设计,让学生通过自主探索,动手操作,涂一涂,画一画真正体验分数的基本性质的形成,逐步理解分数基本性质的含义,使学生对所学知识有认同感。同时培养学生的动手操作、独立解决问题的能力。
二、教学绿点,对分数的基本性质进行巩固和应用
出示问题:“根据分数的基本性质,你能写出几个相等的分数”?学生可能写出2/3=8/12=10/15,也可能写出48/64=24/32=6/8让学生进行小组交流,说出自己写相等分数的依据和方法。学生交流后得出:“一个分数根据分数的基本性质,把分子分母同时乘以或除以同一个数,分数大小不变。
通过让学生写出几个相等的分数,使学生能初步应用分数的基本性质,加深对分数进本性质的理解和掌握。
三、讨论交流、验证规律
我引导学生回顾分数基本性质的学习过程,让学生根据规律验证是不是所有的分数经过这样的变化,大小都不变呢?学生对画有12个小正方形的长方形卡片上进行涂一涂、画一画,找出这些小正方形的4/12,1/3,通过涂一涂、画一画学生得出:4/12=1/3,从而进一步验证了分数的基本性质。
这样的设计,让学生通过动手操作,举例验证分数的基本性质,加强对分数基本性质的理解和巩固,培养学生的应用意识。
四、巩固拓展、应用规律
为了使学生掌握新知,锻炼能力,发展思维,我设计了如下练习题:
1、基础练习
自主练习1:先涂色,在比较大小。学生独立完成,使学生加深对分数基本性质的直观认识。
自主练习2、在()里填上合适的数。通过填合适的数,加深学生对分数基本性质的理解。
2、综合练习
自主练习3:通过这道题,使学生将所学的知识应用到实际中去,感受数学来自于生活的道理。
3、新旧对比,沟通联系
让学生回忆商不变的性质,并与本节课学习的分数的基本性质进行比较,使学生发现利用商不变的性质也能解释分数基本性质的存在,培养了学生初步的演绎推理能力,同时加深了学生对知识的理解。
五、总结反思,深化规律。
我带领学生总结本次课堂:同学们通过这节课你有什么收获?让学生从知识、方法、感受三个方面进行交流。
六、板书设计
x2 = 2/4 = x4
= x2 = 1/2
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
好的板书是一节课的精华,本节课我采用重点式的板书设计,将教材中最为重要的内容加以归纳概括,力求用简洁的文字表达清楚,层次明确,重点一目了然。
我的说课内容到此结束,诚心期待各位评委老师的批评指导,谢谢大家!
《比的基本性质》说课稿2
一、说教材
小学数学冀教版第十册第单元《等式的基本性质》是学生已经掌握了方程的意义的基础上学习的。《等式的基本性质》是本单元的重点,更是今后学习解方程的基础。
我搜集了人教版的教材近行对比,发现:虽然版本不同,内容编排不同但是数学学习内容大体相同,都以学生的动手实践,自主探究与合作交流为学生学习数学的主要方式。整个过程中,教师只是探究活动的组织者、引导者、合作者。在这里值得一提的就是我们现在的版本把等式的基本性质一和性质二都是以文字的内容具体的呈现了出来,而人教版教材是通过游戏的方式呈现的,具体的性质内容是在后来的解方程当中逐步体现的。我个人觉得现在的版本还是可取的。
二、说教学目标
根据大纲的要求和教材的特点,结合五年级学生的特点我制定了如下教学目标:
知识目标:
1、理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
能力目标:
1、在用算式表示试验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
2、通过学习理解并能运用等式的基本性质解决简单问题。
情感目标:培养学生讨论归纳的意识和习惯,养成认真观察、深入思考的良好思维品质。
结合学生的实际情况,我把教学重难点确定为:
教学重点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学难点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学具准备:天平,教学课件,学生导学案等材料
三、说学情分析
学生已经习惯进行高效课堂模式下的学习,具有一定的探究与合作交流能力。在学习了方程的意义的基础上,再加上对天平已有知识的经验积累,应该根据我的教学设计能够一步步研究出等式的基本性质。当然由于学生的理解能力的差异,对于学困生还是应该照顾到。为了实现上述教学目标,我精心进行教学设计,引领学生课堂生成:
四、说教学过程(以学生的自主探究为主)
(一)、速算比赛:
6。6÷11= 128÷3。2= 250×12= 60×0。2=
36÷180= 2。6×10= 190×0。4= 74÷0。2=
这几道题是一直以来坚持的口算训练。不过在处理上采取了比赛的方式,时间是一分钟,我公布答案后学生迅速自评,并由组长算出组内共算对了多少道题,以此作为标准评出优胜小组,并及时进行加分评价。
(二)、创设情境
教师导语:刚才的比赛中某某组表现的很棒,为他们组赢得了宝贵的2分,希望在接下来的学习中继续发扬这种精神,同时老师更希望其他组能有出色的表现。上节课我们用了什么仪器了方程的意义呢?(学生肯定会异口同声的说是天平)教师随机出示天平。每组一台。我们这节课还利用天平学习,学习什么呢?请大家看导学案并齐读课题和目标。教师相机板书。
(三)、独学导学一
导学一:
小实验1、根据图片演示实验。列式为()
实验2、在天平左边的托盘里再放入20克的砝码,这时天平出现什么情况?接着再天平右边的托盘里放入20克砝码。根据这时天平的情况列式()
实验3接着再在天平左右两边同时放入100克砝码,天平会怎么样?可以列出等式()
实验4接着在天平左边的托盘里再拿走20克的砝码,在天平右边的托盘里再拿走20克的砝码。天平会怎样可以列出等式()?
总结:通过上面的实验:观察上面的4个等式,你发现了什么?
学生根据我的设计大多数同学根据已有经验会很快列出算式,可能有同学会利用我给出的天平来验证,独学充分后教师要做好评价。
(四)、对学、群学。
学生充分独学后,对子之间交流进入对学阶段。对子之间交流,交流完后组长组织组内组内总结展示。小组长要根据情况确定待展同学。教师巡视观察那个组利用天平利用的效果好准备接下来的精英展示。教师要关注学困生。特别是双差生。教师还要做评价。
(五)、精英展示
我这个环节准备一组或两组展示。展示的方式可以是一人也可以是多名同学一块展示。教师要做好规律的总结提升和及时的评价,特别是听展。教师利用课件出示学生列出的每个等式。
五、完成导学二。
导学二(1)根据图片写等式
(2)根据图片写等式:
比较上面两组等式,你发现了什么规律?
有了学习经验,这个环节应该很顺利。还是按照高效模式进行,在教学中注意利用教学课件突破学生理解上的难点。有的小组可能还会出现加减的情况,教师要适当引导到倍数关系。
达标训练:(1)30+x=100(2)x — 71=4
30+ x—30=100()x–71+()=4()
x=()x=()
(3)21 x=105(4)x ÷21=3
21x÷()=105()x÷21×()=3()
x=()x=()
学生理解了等式的基本性质理论,我觉得由理论到实践应该给学生一个过渡空间,所以我设计了这一环节。学生独立完成后挑选组长进行展示,此时教师重点强调学生填空的依据,这样就更好的巩固了刚学完的理论。完成后教师小结。引导学生谈收获。
最后是达标测评。我选的是教材42页的第一题。学生做完后教师公布答案,学生互评。教师要做好评价。
《比的基本性质》说课稿3
教材分析:
比例的知识在工农业生产和日常生活中有着广泛的应用。《比例和比例的基本性质》是一节概念课,这部分知识是在学习了比的知识和除法、分数等的基础上进行教学的,而本节课内容是第二单元的第三课时,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,是利用比例知识解决实际问题的先决条件。
教学目标:
1、体会国旗中隐含的数学规律,丰富学生关于国旗的知识,培养学生爱国旗,爱祖国的情感;
2、结合不同规格的国旗的典型事例,经历认识比例和比例的基本性质的过程;
3、认识比例,知道比例的内项和外项。理解并掌握比例的基本性质,会判断两个比是否成比例。
教学重点:
理解比例的意义,会运用比例的基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学理念:
1、让学生在具体情境中学习数学,理解数学概念;
2、让学生经历知识的发生、发展过程,自主构建数学知识;
3、注重解决实际问题,培养学生的应用意识。
一、创设情境,提出问题
三、巩固练习,加强应用
二、合作交流,自主建构
(重点)
教学设计三环节
二、合作交流,自主建构
活动一,教学比例的意义;
活动二,教学比例的基本性质;
兔博士网站中提供的关于国旗通用的五种规格:
(1)长288cm,宽192cm;
(2)长240cm,宽160cm;
(3)长192cm,宽128cm;
(4)长144cm,宽96cm;
(5)长9 6cm,宽6 4cm;
请你任选两种规格的国旗,计算一下它们长和宽或宽和长的比值,小组说说你发现了什么?
初步感知比例的意义:
把比值相等的两个比写成一个等式,像这样
240:160=144:96
240/160=144/96
像这样,表示两个比相等的式子,叫做比例;
组成比例的四个数,叫做比例的项;
中间的两项叫做比例的内项;
两端的两项叫做比例的外项。
总结归纳比例的概念
探索比例的基本性质:
合作交流:
试着把上面比例中的两个外项,两个内项分别相乘,你发现了什么?
在比例里,两个内项的积等于两个外项的积这叫做比例的基本性质。
240:160=144:96
160X144
240 X 96
内项积=外项积
师生共同总结:
基础练习一:
判断下面哪组中的两个比可以
组成比例。
(1)7:3和21:9
(2)0.5:24和1.5:3.6
(3)8:6和1/6:3/4
(4)3/10:1/4和6/25:1/5
基础练习二:
上午10时整,在空地上直立了6根不同长度的竹竿。测得这些竹竿的高度和影子的长度如下表:
竹竿高度与影长的比
3
2.5
2
1.5
1
0.5
影子长度(米)
6
5
4
3
2
1
竹竿高度(米)
(1)写出竹竿高度以与影子长度的比,填在上表中。
(2)根据上面的结果写出三个比例。
拓展练习:
试着利用8的四个因数组成四个比例。
利用比例的基本性质填空:
3:2=( ): 6
( ):12=2:6
课后反思,教学相长:
今后教学中,我还要注意以下几点:
一、是注意学生数学语言表达的完整性。
二、是对学生要及时给予评价,全面了解学生的数学学习过程。要关注他们在数学学习活动中表现出来的情感与态度,让学生建立数学学习的信心。
三、是灵活驾驭课堂的即时生成,要善于捕捉学生们的闪光点。
表示两个比相等的式子叫做比例。
240:160=144:96
160X144
240 X 96
比例的基本性质:内项积=外项积
板书:
比例和比例的基本性质
不妥之处,敬请各位领导、老师批评指正。
谢谢!
《比的基本性质》说课稿4
一、说教材
1、教学内容:
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
二、说教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识
三、说教学过程:
课堂学习是学生学习数学知识,发展能力的重要途经,因此我进行了如下设计:复习了什么叫做比?什么叫做比值?求下面各比的比值.目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
在新授这个环节里我设计了四个部分:第一部分是教学比例的意义,运用比例的意义进行的练习;第二部分是学习比例的基本性质,运用比例的基本性质进行的练习;第三部分运用比例的意义和基本性质进行的练习;第四部分给出四个数让学生写出比例、和给一个乘法等式写出比例。
在第一部分里,我先让学生把相等的比写成等式的形式,为揭示比例的意义做铺垫。随着学生的汇报,教师有意识的将比值相等的比写在一行上,引导学生观察每两个比之间的关系,告诉学生像这样的式子叫做比例,给学生直观的印象。让学生抽象概括出比例的意义,培养学生的思维能力。教学比例的意义后,及时组织练习。判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,培养了学生从多中角度解决问题的能力,达到了熟练运用比例的意义解决问题的能力
第二部分:六年级的学生有了一定的自学探究的能力,教师给了学生一个自学提示,使学生在自学过程中,有顺序,有目的。在汇报比例的各部分名称和基本性质时都让学生举例说明,达到全体学生都能理解的目的。比例和比的区别是小组内研究讨论的一个重要问题,学生能从意义、性质、名称上去区分,从而使学生正确的区分比和比例。
第三部分:根据比例的意义和基本性质,判断下面哪组中的两个比可以组成比例.这样的题最能提高学生运用知识的灵活性。
第四部分:用四个数组比例,学生在组的过程中没有方法和顺序,那么,在交流过程中教师去引导学生发现方法,总结规律,使学生不仅要把题做对,而且要善于总结方法,指导自己更好的去做题。有了这道题,在下一题中,让学生通过一个乘法算式改写成比例式,就稍微容易些了,让小组内交流方法,培养学生善于总结的能力。
在课堂小结中让学生说出本节课印象最深的是什么,目的是让学生对本节课的重点有一个回顾过程,加深学生的印象。
课后练习中出了一个比灵活的开放题,目的是提高他们的综合用能力。让学有余力的学生有思维的空间。
《比的基本性质》说课稿5
尊敬的各位领导,老师们:
大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。
一、教材分析(课件)
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
二、教学目标(课件)
根据教材内容及学生的认知水平,我制定了以下教学目标:
1..使学生理解与掌握分数的基本性质。
2.培养学生观察、比较、分析、概括等方面的能力。
三、教法和学法(课件)
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程(课件)
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)、动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高了之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
《比的基本性质》说课稿6
尊敬的各位评委,各位老师:
大家好!我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:
1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、(认知目标)理解和掌握分数的基本性质。
3、(能力、情感目标)培养学生观察、分析、推理的能力。
教学重点:理解和掌握分数的基本性质。
教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?
本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。
我设计的具体教学过程如下:
第一环节:激趣引入,凸显信息技术的趣味性。
“好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)
第二环节:探索规律,凸显信息技术的直观性和时效性。
1、提出猜想。
学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。
再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。
(“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)
2、完善猜想。
在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。
这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。
(在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)
3、验证猜想,得出规律。
学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。
最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)
第三环节:游戏巩固,思维提升,凸显信息技术的交互性。
学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)
接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。
第四环节:提炼方法,积累基本的数学活动经验。
师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。
第五环节:网上交流,课内向课外延伸。
一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。
最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!
《比的基本性质》说课稿7
今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。
一、本课的教学理念有:
1、以学生发展为本,着力强化主体意识。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。
二、说教材
《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。
本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。
三、说教法
树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。
五、说教学程序
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
《比的基本性质》说课稿8
我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、教学目标
知识目标:
1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:
1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、教学重点和难点
重点:掌握不等式的基本性质并能正确运用将不等式变形
难点:不等式基本性质3的运用
四、教法分析
活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、学法分析
“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
六、教学过程分析
(一)本节教学将按以下五个流程展开:
回顾思考,引入课题
创设问题情景,探索规律
尝试练习,应用新知
总结反思,获得升华
布置作业,深化巩固
(二)教学过程
1、回顾思考,引入课题
观察下面两个推理,说出等式的基本性质
(1)∵a=b
∴a±3=b±3
a±(x2+2y)=b±(x2+2y)
(2)∵a=b
∴3a=3b
-a/4=-b/4
提出问题:那么不等式有没有类似的性质呢?引入课题。
[设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。]
2、创设问题情景,探索规律
问题1:在天平两侧的托盘中放有不同质量的砝码。
右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受)
[设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质]
问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?
如不等式7>4,-1<3不等式的两边都加5,都减5。不等号的方向改变吗?你能得出什么结论?再举几例试试,验证你所得的结论正确吗?(让学生先独立思考,后合作交流)
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果a
如果a>b,那么a+c>b+c,a-c>b-c(教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2<3,两边同乘以5,同除以5(即乘以1/5),同乘以0,同乘以-5,同除以-5。你能得出什么结论?再举几例试试,验证你所得的结论正确吗?
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0,那么ac>bc
如果a0,那么ac 如果a>b,c<0,那么ac 如果abc (教师板书) 各位老师,同学: 大家上午好! 我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。 一、 教材分析 本节内容属于概念教学。《分数基本性质》在小学数学的学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。 二、 学情分析 学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的'基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。 三、 教学目标 综合分析课程标准要求及学生实际,我确定本节的教学目标如下: 1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。 2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。 3.受到数学思想的熏陶,养成乐于探究的学习态度。 教学重点:理解掌握分数的基本性质,它是约分、通分的依据。 教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。 四、 教法学法 根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。 五、 教学过程 本节课的教学过程我分五个部分进行 第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。 第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。 第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。 第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。 第五部分:梳理知识,反思小结。主要是总结全课。 其中,第三部分“合作探究,发现规律”可以细化为三个环节: 环节一:动手操作,进行比较 这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。 环节二:呈现问题,引导观察 这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。 环节三:交流汇报,得出规律 这一环节主要是学生汇报交流,得出结论。 如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。 应该强调的是,无论学生说的多么好,教师最后的总结和确认是必不可缺的。 以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。 一、教材分析 1、 教材内容 《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。 2、知识间的联系: 七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质 同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。 二、指导思想与设计理念 新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。 根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。 三、学情分析 前测:(问卷形式) 问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。 2:试着做一做下面这些题比较大小: 4/7○2/7 1/2○2/4 3/5○9/15 分析:暂无 结论:暂无 四、教学目标及重难点 教学目标: 1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。 2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。 3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。 教学重点: 理解掌握分数的基本性质,它是约分,通分的依据 解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。 教学难点: 理解和掌握分数的基本性质。 解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。 五、教法学法: 教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。 学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。 六、教学过程 一、迁移旧知.提出猜想 1回忆旧知 活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系: 被除数除数= 通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质: 被除数和除数同时乘或除以相同的数(零除外),商不变。 2、提出猜想: 既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。 二、验证猜想,建构新知 环节1、 看图分类 下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。 通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。 环节2、 讨论方法 师:你是怎么判断它们相等的? 师:它们相等,用算式可以怎么表示? 1/2 = 2/4 = 4/8 通过让学生表述怎么判断它们相等的锻炼学生的表达能力。 3、研究规律 第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢? 利用研究卡进行研究。 确定的研究对象 分子和分母同时乘上或者 除以一个相同的数 得到的分数 研究对象与得到的分数相等吗? 相等( )不相等() 猜想是否成立? 成立( )不成立( ) 充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。 第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。 师:为什么要0除外? 师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。) 练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13 师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变) 师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外) 师:分数的基本性质与商不变性质有什么联系? 环节4、质疑完善 3/4 = 3( )/ 4( ) 师:括号中可以填哪些数? 预设:可以填无数个数 师:如果只用一个数来表示,填什么数好? 预设:字母 师:这个字母有什么特殊要求吗?(0除外) 得到一个初级的数学模型。3/4= 3X/ 4X(X0) 让学生打开课本进行阅读、内化,并想一想还有什么问题吗? 通过这个环节的练习,进行第一次数学建构。 三、 练习升华 通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。 1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3 2、把5/6和1/4都化为分母为12而大小不变的分数。 3、把2/3和3/4都化为分子为6而大小不变的分数。 4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少? 5、 和 哪一个分数大,你能讲出判断的依据吗? 四、总结延伸 师:这节课学了什么? 师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗? A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0) 在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。 五、作业p87-1、2 板书设计 分数基本性质 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。 68 34 1216 我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。 本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。 本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。 以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。 根据以上分析。我认为本节课的教学目标有以下几点: 1、经历探索分数的基本性质的过程,理解分数的基本性质。 2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。 3、培养学生在合作中逐步形成评价与反思的意识。 4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。 我认为本节课的教学重点是:理解、掌握分数的基本性质。 难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。 下面说说我的教学过程: 我将本课的教学设计以下几个环节, 一、设疑激趣,引入新课 教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。 首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗? 这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。 二、自主探索,学习新知 新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。 1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。 2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变? 学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。) 3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。) 师:谁能用一句话把这个变化规律叙述出来呢? 生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。 师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。 4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。 5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。 结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。 6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。 教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。 三、分层练习,巩固深化 只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。 1、涂一涂练习14,第1、7题。 因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。 2、说一说完成练习14,第8题 我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。 3、想一想:第5、9、10题(选择一题做为作业) 在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。 四、畅谈收获,小结全课 让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。 整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。 一、教学内容分析 《函数的增减性》是中职数学第二章第三节内容,是函数这一章的重要组成部分,函数这一章是中职数学的重点,并且有一定的难度,因此学好函数的性质显得十分重要。 二、学生情况分析 知识结构 学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。 能力结构 通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。 学习心理 函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。 本班学生特点 本班为苹果园中学高一1班,为理科实验班,学生数学素养较好。 三、教学目标分析 根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为: 1.知识与技能: (1)从形与数两方面理解单调性的概念。 (2)初步掌握利用函数图象和单调性定义判断。 (3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。 2.过程与方法: (1)通过对函数单调性定义的探究,渗透数形结合思想方法 (2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。 3.情感态度价值观: 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法。 四、教学重难点分析 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性描述性概念的形成。 五、教学方法分析 因此,根据教学内容和学生的认知、能力水平,本节课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。 六、教学过程 1.创设情境、引入新课 上山与下山的路线分析(上升、下降) 学生:分析路线曲线的特点(学生描述) 展示函数图象 学生:观察图像、描述图像特征。 教师:总结学生答案,纠正错误。 据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数? 结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。 学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导。 (二)初步探索、形成概念 学生在老师的指导下得出: 表征变化性态上的这种区别,是函数增减性.设函数y=f(x)在[a,b]上有定义.若随着在[a,b]上的x增加时函数值y也增加,那么把y=f(x)叫做是[a,b]上单调增加函数;反之,若随着在[a,b]上的x增加时函数值y反而减小,那么把y=f(x)叫做是[a,b]上单调减小函数. 在[a,b]上单调增加函数或单调减小函数,通称[a,b]上的单调函数,区间[a,b]叫做单调区间. 在此过程中要复习一下之前学习的区间的知识。 求函数的单调区间,主要通过观察描述。 我们来看图表示的函数.在整个区间[0,2]上函数并不是单调的,但在[0,π/2],[π/2,3π/2],[3π/2,2π]上,函数却依次是单调增加、单调减小、单调增加的,即这三个区间是图给函数的单调区间. 在例题一的处理上要强调第三幅图函数在定义域内不是单调的,但是在“小区间”内是单调的。注意部分与整体的关系。同时在此回顾区间的概念。 在有些问题上可以适当降低难度,比如例二的第三小题: y=1/x2.学生对于这一题的解决有很大的难度,本着从学生实际出发这一点,我们可以对它适当删减。其他题目注意区间的“闭”与“开”,以及与图像对应的关系。 在学生板书是应该注意促进学习成绩稍差的学生学习积极性,这样还能是大家更好的发现不足,及时弥补,不再犯同样的错误。 课堂小结可以让学生来完成,同时板书设计不宜太过复杂,要简洁明了,这样更有利于学生记忆,掌握所学知识。作业要尽量简单基础,不能让学生对于作业有种负担感,这样才能促使学生独立完成,减少学生抄袭作业的情况。 总之这节课主要还是以学生的认知结构,和学习现况出发,坚持“学生为主题、教师为主导、训练为主线”的思想。 一、说教材 1、说教学内容: 《比例的意义和基本性质》人教版教材数学六年级下册第三单元的内容,在第41页例2及课堂活动,第51页练习六中的第1、2、3题。 2、教材的地位与作用: 比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。 3、教学目标的确定 《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、过程与方法、情感和态度三方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标: (1)知识与技能 ①理解比例的意义,认识比例各部分名称,理解并掌握比例的基本性质。 ②能运用比例的意义或基本性质判断两个比能否成比例,并会组比例。 ③运用相关知识解决问题,提高解决问题的能力。 (2)过程与方法 引导学生通过观察、比较、计算、交流探索新知。 (3)情感、态度与价值观 在自主学习过程中体验发现数学规律的乐趣,培养学生用数学知识解决实际问题的能力。 4.教学重难点 教学重点:理解比例的意义与基本性质。 教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组比例。 5、教法、学法: 根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。 二、说程序设计 “比例的意义和基本性质”的学习基础是“比的意义和基本性质”,学生在单纯理解“比例的意义和基本性质”上没有多少困难,但是比和比例的意义容易混淆,基于此,我作了如下的教学设计。 (一)在引入上我直接提示课题,引起生对学过的比的知识的回忆。 “比例的意义和基本性质”的学习基础是“比的意义和基本性质”, 我注重从学生已有的知识出发,让学生复习了比和求比值的知识,比的基本性质,让生在复习旧知的基础上自然过渡到新知识的学习,让学生初步感到新旧知识的联系,在这种情景下,用出示例1进入对新知识的学习。 (二)教学新课 教学比例的基本性质,我采用小组合作学习方式,自主探究比例的基本性质。这样引导学生通过自己的努力去发现比例的秘密,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的数学学习能力。教学完比例的基本性质后,告诉学生,判断两个比能否组成比例,除了根据比例的意义,也可根据比例的基本性来判断,为巩固练习一作一个铺垫提示。 (三)课堂活动 书上第50页,要求小组合作完成,改变了书中“任意抽出4张”的要求为“任意选出4个数字组成比例”,给学生足够的时间写比例,交流写法。 设计意图:巩固运用比例的意义和基本性质的知识,让学生在玩中学,激发学生的学习兴趣,鼓励学生小组合作的意识。 (四)巩固练习,形成技能 1、基本训练 (1)练习中的第1题,可用不同的方法来判断,先让学生独立判断,再全班交流。让学生在交流中互相学习。 (2)练习中的第3题,这儿的设计意图应该是:让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是为下节课 “解比例”作准备。 各位老师,同学: 大家上午好! 我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。 一、教材分析 本节资料属于概念教学。《分数基本性质》在小学数学学习中起 着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。 二、学情分析 学生已经清楚理解分数的好处,明确分数与除法的关系,商不变 性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。 三、教学目标 综合分析课程标准要求及学生实际,我确定本节教学目标如下: 1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同 的分数化成分母(或分子)相同而大小不变的分数。 2.初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。 3.受到数学思想的熏陶,养成乐于探究的学习态度。 教学重点:理解掌握分数的基本性质,它是约分、通分的依据。 教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。 四、教法学法 根据本节课的教学目标,思考到学生已有的知识、生活经验和认 知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。 五、教学过程 本节课的教学过程我分五个部分进行 第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问 题情境,揭示本节课要研究的问题。 第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。 第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。 第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。 第五部分:梳理知识,反思小结。主要是总结全课。 其中,第三部分“合作探究,发现规律”能够细化为三个环节: 环节一:动手操作,进行比较 这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。 环节二:呈现问题,引导观察 这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。 环节三:交流汇报,得出规律 这一环节主要是学生汇报交流,得出结论。 如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。 就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。 以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。 一、说教材。 1、教学内容: 《比例的意义和基本性质》是浙教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。 2、教学目标: 根据新课标要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标: (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。 (2)认识比例的各部分名称。 (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。 培养学生自主参与意识、自主探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。 3、教学重、难点: (1)教学重点:理解比例的意义和基本性质。 (2)教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。 二、说教学设计。 课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。 (一)复习导入。 先复习比的一些知识,什么叫比?什么叫比值?然后出示四个比让学求比值。揭示课题。 (二)教学新课。 分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。 第一部分:先出示例1,让学生写出比,再计算它们的比值,然后观察、比较,发现比值相等,问:“那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是0。4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。 第二部分:在认识比例的各部分名称时,从比较比和比例有什么区别引出比例各部分的名称。 在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。接着就做些练习对所学的知识进行巩固及应用。特别强调了已知两个外项的积等于两个内项的积,利用这个式子改写成比例。 温馨提示:通过以上关于《比的基本性质》说课稿内容介绍后,希望可以对你有所帮助(长按可复制内容)。《比的基本性质》说课稿9
《比的基本性质》说课稿10
《比的基本性质》说课稿11
《比的基本性质》说课稿12
《比的基本性质》说课稿13
《比的基本性质》说课稿14
《比的基本性质》说课稿15