搜索
写经验 领红包
 > 美食

巧解行测“最糟糕”的题目----最不利原则

在日常生活和生产中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。下面教育通过具体例子来说明最不利原则以及它的应用。

【例1】口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?

【解析】如果碰巧一次取出的4个小球的颜色都相同,就回答是“4”,那么显然不对,因为摸出的4个小球的颜色也可能不相同。回答是“4”是从最“有利”的情况考虑的,但为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。

“最不利”的情况是什么呢?那就是我们摸出3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。这样摸出的9个球是“最不利”的情形。这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。所以回答应是最少摸出10个球。

由例1看出,最不利原则就是从“极端糟糕”的情况考虑问题。如果例1的问题是“最少摸出几个球就可能有4个球颜色相同”,那么我们就可以根据最有利的情况回答“4个”。现在的问题是“要保证有4个小球的颜色相同”,这“保证”二字就要求我们必须从最不利的情况分析问题。

【例2】口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。其中红球3个、黄球5个、蓝球10个。现在一次从中任意取出n个,为保证这n个小球至少有5个同色,n的最小值是多少?

【解析】与例1类似,也要从“最不利”的情况考虑。最不利的情况是取了3个红球、4个黄球和4个蓝球,共11个。此时袋中只剩下黄球和蓝球,所以再取一个球,无论是黄球还是蓝球,都可以保证有5个球颜色相同。因此所求的最小值是12。

【例3】一排椅子只有15个座位,部分座位已有人就座,乐乐来后一看,他无论坐在哪个座位,都将与已就座的人相邻。问:在乐乐之前已就座的最少有几人?

【解析】将15个座位顺次编为1~15号。如果2号位、5号位已有人就座,那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。根据这一想法,让2号位、5号位、8号位、11号位、14号位都有人就座,也就是说,预先让这5个座位有人就座,那么乐乐无论坐在哪个座位,必将与已就座的人相邻。因此所求的答案为5人。

【例4】一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?

【解析】从最不利的情形考虑。用10把钥匙依次去试第一把锁,最不利的情况是试验了9次,前8次都没打开,第9次无论打开或没打开,都能确定与这把锁相匹配的钥匙(若没打开,则第10把钥匙与这把锁相匹配)。同理,第二把锁试验8次……第九把锁只需试验1次,第十把锁不用再试(为什么?)。共要试验9+8+7+…+2+1=45(次)。所以,最少试验45次就一定能使全部的钥匙和锁相匹配。

温馨提示:通过以上关于巧解行测“最糟糕”的题目----最不利原则内容介绍后,希望可以对你有所帮助(长按可复制内容)。