搜索
写经验 领红包
 > 社会

行测指导:牢记题型特征解决多者合作问题

【速解36技】【易错题盘点】【】

【政综研学课】【报告研学5件套】【常识速学】【巧学行测】【月半时政】【秒解行测 周一至周五更新】

工程问题中的多者合作问题在考试中比较常见,它的题型特征十分明显,且解题思路十分清晰。今天教育就带大家来了解下多者合作问题的题型特征及解题思路。

多者合作指的是多个主体通过一定方式合作完成工作的问题。解决多者合作的思路,关键在于梳理出题干描述的不同合作方式,并结合工作量一定来建立等量关系。在这个解题思路的前提下,根据题目已知条件的不同,通过设特值的方法,来快速求解题目。

例1

将A、B、C三个水管打开向水池放水,水池24分钟可以灌满;将B、C、D三个水管打开向水池放水,水池30分钟可以灌满;将A、D两个水管打开向水池放水,水池40分钟可以灌满。如果将A、B、C、D四个水管打开向水池放水,水池需多少分钟可以灌满?

A.50 B.40 C.30 D.20

【解析】D。题目最后求灌满水池的时间,时间=工作量÷工作效率。题干中既不知道工作量也不知道对应的工作效率,只知道一些其他工作方式的工作时间,设出工作量或者工作效率中的一个,另一个就可以表示出来。因为不同合作方式效率各不相同,但工作量是相同的,所以设工作量表示工作效率会更方便。并且工作量要除以工作时间,所以设工作量为时间的最小公倍数会方便计算。综上可以设工作量为24、30、40的最小公倍数120,则选择D项。

小结:当多者合作题目中只给了完工时间,求其他完工时间,可以设工作总量为已知完工时间的最小公倍数,再列式求解。

例2

甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束。问丙队在A工程中参与施工多少天?

A.6 B.7 C.8 D.9

【解析】A。题目求丙队在A工程中参与施工的天数,时间=工作量÷工作效率,和上道题目类似,我们需要设工作量和工作效率当中的一个。这道题中已知不同工程队的效率比,只需要设出比例中每一份的量便可以知道每个工程队的效率,结合工作时间可以表示出工作量。而设每一份为1会让计算最简便,综上可以设甲队的效率为6、乙队的效率为5、丙队效率为4。设丙队在A工程中参与施工t天,根据A、B两项工程工作量相同可以列出方程6×16+4t=5×16+4(16-t),解得t=6,选择A选项。

小结:当多者合作题目中已知多个主体的效率关系,可以根据效率关系,设效率为效率的最简比,再列式求解。

总结:以上就是多者合作问题的常见题型的特征和解题思路,相对其他题型来说是比较固定和简单的,大家只要牢记题型特征再勤加练习,就可以轻松解决此类问题了。

行测推荐》》》

【2024国省考报告研学5件套】

》》》【速解36技】【黄金考点】【易错题盘点】【常识速学】

》》》|【秒解行测(周一-周五更新)】

温馨提示:通过以上关于行测指导:牢记题型特征解决多者合作问题内容介绍后,希望可以对你有所帮助(长按可复制内容)。