三极管工作原理、检测口诀、常见类型介绍,三极管知识你学会了吗
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件,其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
1、三极管的工作原理
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大
下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源 能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变 化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路
三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因:
(1)、首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压 大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一 个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小 信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
(2)、输出信号范围的要求,如果没有加偏置,那么只有对那些增加的 信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极 电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。
三、开关作用
下面说说三极管的饱和情况。像上面那样的图,因为受到电阻 Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大 时,三极管就进入了饱和状态。
一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很 大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。
四、工作状态
如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管 的放大倍数 β),三极管就饱和,相当于开关闭合,灯泡就亮了。
由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通 断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。
对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里的了。
2、检测三极管的口诀
三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了迅速掌握测判方法,这有四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”
一、 三颠倒,找基极
三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。
二、 PN结,定管型
找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、 顺箭头,偏转大
找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度 都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c
四、 测不出,动嘴巴
若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。
具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。
3、常见的三极管有这么几种常用的三极管,市面上供货量最多的,使用量最大的,价格也比较便宜的管子(仅供参考哦)。
(1)、2n3904、2n3906
2n3904代表N型三极管,而2N3906就是p型三极管。这就是我们在设计电路中用来做控制信号用得最多的三极管。最主要的特点是速度特别的快!相当于我们经常说的的开关管!我们在设计电路的控制部分,只关心信号处理时,在这种情况下,我们就只要2n3904、2n3906这种小功率的三级管。速度比较快在控制过程中最大的好处就是延时特别少。
第二个特点就是价格特别便宜,一般像这样一个是两到三分钱,特别便宜,就是用几个,加起来就几毛钱,然而如果你用一个冷门的三级管,它一个的价格就要几毛钱了,这就是几倍的关系,那肯定是选择性价比高的。
第三要注意2n3904、2n3906一般最大通过的电流是在200mA,即它最大通过电流的能力就是200mA,最好在设计的时候都把它设计为小于200mA。
(2)、2n2222, 2n2907
2n2222,n型的管子,它的特点是电流能力比较大,大概在500mA左右。对应于p型的是2n2907。如果我们想通过电流更大的,这种管子也是用得比较多的,
(3)、8050、8550
8050是n管,8550是p管,这两个管子也是很多公司经常使用的,他们的电流能力正常通过在500mA,而它最大的电流能够达到1.5A。但是,这个管子的速度较慢,没有之前那两个快。