这样的低功耗陷阱,这样避免最有效
硬件设计中,需要考虑的一个重要问题就是低功耗设计,但是如果你火候不够,往往会误入&34;的怪圈,现在让我们来看看老司机是如何点评低功耗设计中的8大现象的。
现象一:我们这系统是220V供电,就不用在乎功耗问题了。点评:低功耗设计并不仅仅是为了省电,更多的好处在于降低了电源模块及散热系统的成本,由于电流的减小也减少了电磁辐射和热噪声的干扰,随着设备温度的降低,器件寿命则相应延长。
现象二:这些总线信号都用电阻拉一下,感觉放心些。点评:信号需要上下拉的原因很多,但也不是个个都要拉,上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下,但拉一个被驱动了的信号,其电流将达毫安级,现在的系统常常是地址数据各32位,可能还有244/245隔离后的总线及其它信号,都上拉的话,几瓦的功耗就耗在这些电阻上了。
现象三:CPU和FPGA的这些不用的I/O口怎么处理呢?先让它空着吧,以后再说。点评:不用的I/O口如果悬空的话,受外界的一点点干扰就可能成为反复振荡的输入信号了,而MOS器件的功耗基本取决于门电路的翻转次数,如果把它上拉的话,每个引脚也会存在微安级的电流,所以最好的办法是设成输出,当然外面不能接其它有驱动的信号。
现象四:这款FPGA还剩这么多门用不完,可尽情发挥吧。点评:FGPA的功耗与被使用的触发器数量及其翻转次数成正比,所以同一型号的FPGA在不同电路不同时刻的功耗可能相差100倍,尽量减少高速翻转的触发器数量是降低FPGA功耗的根本方法。
现象五:这些小芯片的功耗都很低,不用考虑。点评:对于内部不太复杂的芯片功耗是很难确定的,它主要由引脚上的电流确定,一个ABT16244,没有负载的话耗电大概不到1毫安,但它的指标是每个脚可驱动60毫安的负载(如匹配几十欧姆的电阻),即满负荷的功耗最大可达60*16=960mA,当然只是电源电流这么大,热量都落到负载身上了。
现象六:存储器有这么多控制信号,我这块板子只需要用OE和WE信号就可以了,片选就接地吧,这样读操作时数据出来得快多了。点评:大部分存储器的功耗在片选有效时(不论OE和WE如何)将比片选无效时大100倍以上,所以应尽可能使用CS来控制芯片,并且在满足其它要求的情况下尽可能缩短片选脉冲的宽度。
现象七:这些信号怎么都有过冲啊?只要匹配得好,就可消除了。点评:除了少数特定信号外都是有过冲的,只要不是很大,并不一定都需要匹配,即使匹配也并非要匹配得最好。
像TTL的输出阻抗不到50欧姆,有的甚至20欧姆,如果也用这么大的匹配电阻的话,那电流就非常大了,功耗是无法接受的,另外信号幅度也将小得不能用,再说一般信号在输出高电平和输出低电平时的输出阻抗并不相同,也没办法做到完全匹配。
所以对TTL、LVDS、422等信号的匹配只要做到过冲可以接受即可。
现象八:降低功耗都是硬件人员的事,与软件没关系。点评:硬件只是搭个舞台,唱戏的却是软件,总线上几乎每一个芯片的访问每一个信号的翻转差不多都是由软件控制的。
如果软件能减少外存的访问次数(多使用寄存器变量、多使用内部CACHE等)、及时响应中断(中断往往是低电平有效并带有上拉电阻)及其它针对具体单板的特定措施都将对降低功耗作出很大的贡献。