> 知识
实数 性质(实数的性质是什么)
一题一得:实数性质解读——数学老师一般不会讲
例题:已知x、y均为有理数,且x^2+2y+√2y=17-4√2,则x+y的值为几?
这道题是一个方程两个未知数x、y,用常规方法肯定无法求出x和y的值,解决此题肯定有自己的门道。已知中专门告诉x和y为有理数,而方程中又出现无理数√2,就意味着需要运用实数的性质来解决。
首先回顾实数的性质:
乘法:有理数×有理数=有理数,有理数(0除外)×无理数=无理数,无理数×无理数=有(无)理数;
加法:有理数+有理数=有理数,有理数+无理数=无理数。上面这道题通过移项后明显是有理数+无理数=0(有理数),那么说明无理数√2(y+4)只有等于0才能满足条件,即就是y+4=0,求出y=负4。
例题图
解答过程:
移项得:x^2+2y-17+√2y+4√2=0
合并:x^2+2y-17+√2(y+4)=0
由法则可知:√2(y+4)=0
解得:y=-4
代入:x^2+2y-17=0
解得:x=正负5
所以x+y=1或负9。
后记:回顾这道题的解答过程,掌握实数性质是关键,更要善于发现解决问题的突破口就是其中两点,有理数和√2,如果没有这种数学灵感,光靠背记性质也是没有用的。
温馨提示:通过以上关于一题一得:实数性质解读——数学老师一般不会讲内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。