搜索
写经验 领红包

立体几何用向量证明垂直平行(立体几何中证明垂直的方法)

证明立体几何垂直关系第五招一一向量法

万物皆数,用数表示世界,通过数的计算解决问题是数学的一大特点与进步,向量就是数与形最好的结合。

例题:如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD,证明:PA⊥BD。

立体几何用向量证明垂直平行(立体几何中证明垂直的方法)

证明:

取BC得中点O,连结PO,

∵平面PBC⊥底面ABCD,△PBC为等边三角形

∴PO⊥底面ABCD

以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系如下:

立体几何用向量证明垂直平行(立体几何中证明垂直的方法)

变式:如图,正三棱柱ABC-A1B1C1的所有棱长都是2,D是CC1的中点,求证:AB1⊥面A1BD

立体几何用向量证明垂直平行(立体几何中证明垂直的方法)

温馨提示:通过以上关于证明立体几何垂直关系第五招一一向量法内容介绍后,相信大家有新的了解,更希望可以对你有所帮助。