辅助线在几何中的应用(各种辅助线的作法大全)
导语:辅助线口诀学起来,几何不再难!常用辅助线方法汇总,建议收藏
“怎么会有一道立体几何题一上来第一问就要连着做四条辅助线啊”
“怎么会有数据计算题的数据能占一页纸啊”
“辅助线,我劝你善良……”
以上这些都是学生做数学题时候的吐槽,今天就教大家几何常见辅助线口诀,方便记忆,还有一些作辅助线的方法,觉得有用就收藏。
常用的作辅助线的方法
一:中点、中位线,延线,平行线
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”
托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)
五:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
本文内容由小冰整理编辑!