搜索
写经验 领红包
 > 地理

1/cosx的原函数是多少

1/cosx的原函数是ln|secx+tanx|+c。解答如下:

先算1/sinx原函数,s表示积分号

s1/sinxdx

=s1/(2sin(x/2)cos(x/2))dx

=s1/[tan(x/2)cos²(x/2)]d(x/2)

=s1/[tan(x/2)]d(tan(x/2))

=ln|zhitan(x/2)|+c

因为tan(x/2)=sin(x/2)/cos(x/2)=2sin²(x/2)/[2sin(x/2)cos(x/2)]=(1-cosx0/sinx=cscx-cotx

所以s1/sinxdx=ln|cscx-cotx|+c

s1/cosxdx

=s1/sin(x+派/2)d(x+派/2)

=ln|csc(x+派/2)-cot(x+派/2)|+c

=ln|secx+tanx|+c