数据工程师和数据分析师哪个赚钱(数据工程师和数据分析师)
导语:数据工程师、数据分析师、数据科学家,这么多头衔,你分得清吗?
对于非专业人士来说,数据科学家,数据分析师和数据工程师的角色可能并没有什么不同。但实际上,这三种职位是完全不同的。数据工程师这一头衔是在数据科学领域新兴发展起来的。
过去,数据工程师的角色往往是由商业智能开发人员来担任的,但是随着数据的不断庞大以及复杂性的不断增加,其工作量已经远远超过了一个简单开发人员能够负荷的了。
什么是数据工程师?
虽然数据科学家和数据分析师也在从事数据挖掘和洞察收集方面的工作,但是数据工程师是从事更基础的工作。面临过度简化的风险,数据工程师要收集、开发和构建数据科学家和分析师所要分析的数据和基础设施。
数据工程师首先要是个软件工程师,要设计和维护系统,收集和整合不同来源的数据,创建有意义的数据集。数据工程师虽然不涉及到机器学习或者其它分析任务的开发,但是它们负责让这些实现的查询功能,并确保数据收集的完整和准确。简而言之,数据工程师就是负责计算和其他分析发生的基础系统的方方面面。
通常,数据工程师都有工程、计算机科学或软件开发的背景,具备数据库开发和管理、工程实践的知识。大多数都在高等院校获得了学位,并且有实际工作经验。一般来说,软件工程师需要具备以下能力,包括但不限于数据库管理(特别是数据清理和确保准确的数据集)、扩展、建立容错数据管道,系统监控和错误管理。
数据工程师为什么如此重要?
数据科学被各界人士和媒体反复定义为未来最重要的行业之一, “哈佛商业评论”还曾经将数据科学称为“21世纪最性感的工作”。但是这些陈述讲的通常是数据分析,或者从数据中获得可行的实际过程。
例如,我们经常会听到零售商分析客户的购买模式,也许我们从未向商家透露过我们已经有小孩了,但是我们却在推送中收到了尿片优惠券。
而如果没有数据工程师,那么大部分分析都是不可能实现的。因为使用之前方法创建的数据太多了,所以保持相关性是很重要的。数据工程是大数据新世界的基础部分,不仅增加了收集的数据量,而且确保了数据的清晰一致和高质量。虽然数据科学的努力有时并不可见,但是如果没有这个过程,企业是无法从数据的收集和分析中获得可靠结果。
没有数据工程师的世界?不可能
面对数据收集使用日益增长的监管要求,数据工程师也是维护合规性的重要组成部分。从工程角度展示数据流程,用户可以更完全地遵守审核员请求并准确提供必要的信息。
大数据世界日益复杂的意义在于,获得洞察力不仅需要一套基本的算法,而且还需要对分析原理的基本了解。分级角色确保了流程的各个方面的准确和适当的管理,发挥各个学科的优势和能力。数据工程师将继续成为这一过程的重要组成部分,开发和实施将形成数据驱动型未来的新技术。
免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请反馈,一经查实立刻删除内容。本文内容由快快网络小彤创作整理编辑!