搜索
写经验 领红包

反激式电源的开关过程是什么(反激式电源的开关过程包括)

导语:反激式电源的开关过程

我们分析的主要问题还是在Q1管子在关断过程中的响应,至于设计电路减小这个响应的影响,方法有很多,个人以为就取值和影响合在一起做一个小专题。

在关断过程中,如果不考虑加入抑制暂态过程的电路,我们看到的波形将不会是理想的,如下图所示:

把上回写的功率变压器模型 改进模型2带入其中分析:

Mos管关断前的稳态分析:

励磁电感和漏电感中均储存能量,同时由于二极管的结电容存在,次级电容上都存在一定的电压,次级漏感中无电流。

然后我们把Mos管关掉,看下图:

我们来吧上面的过程整理一下:

1.MOS管关断后,初级电流(励磁电感和初级漏电感和电源的综合作用)给MOS输出电容充电,初级电容,初次级之间电容,次级电容,次级二极管电容,负载电容则开始放电(你可以这样理解,因为压差小了,电容放电,也可以理解为反向充电),Mos管DS端电压是上升的(这里可以认为是上面所涉及的分布参数之间的谐振,这个电路的Q之很小的),此时的电压可以认为是线性上升的。

注意此时的次级的二极管是没有导通的,因为DS端电压比较小。

2.当DS端电压上升,次级的电压达到输出电压(这是客观存在的,因为我们要保证输出电压的稳定)+整流管的电压后,如果没有次级漏感,次级回路就导通了,因此DS端电压会继续上升,当克服了次级漏感的影响后,次级电流开始上升,在这个时候励磁电感的能量由于有更小的阻抗通路,从初级来看,初级电流会减小。

3.这个时候起决定性作用的就变成了初级漏感,它不能耦合到次级上没有小的阻抗通路,因此初级漏电感就和Mos管输出电容之间和初级电容之间谐振,电压形成几个震荡(如果没有吸收和clamped电路这个过程会持续很久)。

初级漏感电流是初级电流的一部分,因此伴随着初级漏感电流的下降的是次级电流的上升,如果没有clamped电路,电流的下降会非常快,如果加入clamped电路等于把这个过程拉长,电压应力也就减小了。

本文内容由小余整理编辑!