> 汽车交通
泰勒级数的推导过程(泰勒级数怎么理解)
导语:泰勒级数推导思路的理解
图1
泰勒 ( Taylor ) 级数
图2
图3
从图2图3可以看到,函数p(x)形式已知,现在的目的是把f(x)用p(x)的形式来表示出来。在
p(x)里面,系数ai是未知的。同时,要把f(x)用p(x)的形式来表示出来,则这两个函数必须尽量一致。从图3可以看出,当f(x)与p(x)的高阶导数相等的时候,两条曲线将无限趋近一致。
那么,现在的问题就变成了如何确定图2中p(x)的表达式的系数ai了,同时,又要尽量将这些系数和f(x)的高阶导数联系起来,因此,将图2中p(x)的表达式改写成
图4
因为
图5
再由图4可得:
图6
图7
如果包括误差项,则:
对于麦克劳林级数
常用函数的麦克劳林公式:
以上的证明思路大概是:
1:先确定一个多项式P(x),再假定要展开的函数 f(x) 和这个多项式各阶导数相等。
2:为了建立多项式系数和函数 f(x) 各阶导数的联系,需要构造一个特别的多项式(图4)。
3:根据这个特别多项式得出系数ai和函数 f(x) 在某一点x0各阶导数之间的联系,从而得出泰勒展开式。
免责声明:本站部份内容由优秀作者和原创用户编辑投稿,本站仅提供存储服务,不拥有所有权,不承担法律责任。若涉嫌侵权/违法的,请反馈,一经查实立刻删除内容。本文内容由快快网络小苹创作整理编辑!